Reflect, Retry, Reward: Self-Improving LLMs via Reinforcement Learning

在这里插入图片描述

论文主要内容与创新点总结

一、主要内容
  1. 研究背景与目标
    大语言模型(LLMs)在复杂任务中仍存在局限性,传统微调方法依赖大量标注数据或合成数据,但在数据稀缺时难以应用。本文提出通过自我反思(Self-Reflection)强化学习(Reinforcement Learning, RL) 结合的框架,让模型通过反思失败案例提升任务表现,且仅需二进制反馈(成功/失败)。

  2. 方法框架:Reflect, Retry, Reward

    • 阶段一:失败反思:模型首次任务失败后,生成自我反思文本,分析错误原因。
    • 阶段二:重试与奖励:基于反思文本重试任务,若成功则通过Group Relative Policy Optimization(GRPO)</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值