文章主要内容总结
本文围绕大推理模型(LRMs)的推理能力展开系统研究,通过可控谜题环境分析其在不同问题复杂度下的表现,揭示其优势与局限性:
- 研究背景与问题:当前LRMs(如OpenAI o1/o3、DeepSeek-R1等)虽在推理基准测试中表现提升,但对其底层能力、缩放特性及局限性的理解不足。现有评估依赖数学和编码基准,存在数据污染且缺乏对推理轨迹的深度分析。
- 研究方法:采用可控谜题环境(如汉诺塔、跳棋、过河、积木世界),通过调整问题复杂度(如磁盘数量、棋子数量等),系统分析LRMs的最终答案准确性与内部推理轨迹。
- 核心发现:
- 三阶段性能模式:
- 低复杂度任务:标准LLMs比LRMs更高效准确;
- 中等复杂度任务:LRMs通过长思维链(CoT)展现优势;
- 高复杂度任务:LRMs与标准LLMs均完全崩溃。
- 推理努力的反直觉限制:LRMs的推理token使用量随复杂度增加至临界点后反而下降,尽管to
- 三阶段性能模式: