The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models

文章主要内容总结

本文围绕大推理模型(LRMs)的推理能力展开系统研究,通过可控谜题环境分析其在不同问题复杂度下的表现,揭示其优势与局限性:

  1. 研究背景与问题:当前LRMs(如OpenAI o1/o3、DeepSeek-R1等)虽在推理基准测试中表现提升,但对其底层能力、缩放特性及局限性的理解不足。现有评估依赖数学和编码基准,存在数据污染且缺乏对推理轨迹的深度分析。
  2. 研究方法:采用可控谜题环境(如汉诺塔、跳棋、过河、积木世界),通过调整问题复杂度(如磁盘数量、棋子数量等),系统分析LRMs的最终答案准确性与内部推理轨迹。
  3. 核心发现
    • 三阶段性能模式
      • 低复杂度任务:标准LLMs比LRMs更高效准确;
      • 中等复杂度任务:LRMs通过长思维链(CoT)展现优势;
      • 高复杂度任务:LRMs与标准LLMs均完全崩溃。
    • 推理努力的反直觉限制:LRMs的推理token使用量随复杂度增加至临界点后反而下降,尽管to
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值