论文主要内容与创新点总结
一、主要内容
1. 研究背景与目的
- 基于大型语言模型(LLM)的对话式人工智能(CAI)如ChatGPT在各领域广泛应用,但用户在交互中可能泄露个人信息,存在隐私风险。
- 以往研究多关注用户自然披露的个人信息,而本文首次系统探究专门设计用于提取用户个人信息的恶意LLM-CAI,评估不同恶意策略的有效性及用户反应。
2. 研究方法
- 实验设计:采用随机对照试验,502名参与者随机分配至12种CAI(4种提示策略×3种LLM),包括良性CAI(基准)、直接策略(Direct)、用户利益策略(User-benefit)、互惠策略(Reciprocal),使用Llama-3-8b、Llama-3-70b、Mistral-7b等LLM。
- 数据收集: