Prioritizing Alignment Paradigms over Task-Specific Model Customization in Time-Series LLMs

在这里插入图片描述

文章主要内容总结

  1. 研究背景与挑战
    • LLMs在时间序列中的应用潜力:LLMs在时间序列推理任务(如预测、异常检测、因果推理等)中展现出零样本学习能力,但存在符号自然语言与时间序列数据的模态差距,导致传统任务定制模型效率低、灵活性差。
    • 现有方法的局限性:现有方法过度关注特定任务模型定制,忽略了时间序列的基本元素(Time-Series Primitives),如领域(Domain)、特征(Characteristic)和表示(Representation),导致模型成本高、适应性弱。
  2. 核心观点与方法
    • 对齐范式优先:提出应优先基于时间序列基本元素设计对齐范式,而非直接定制任务模型。通过对齐范式激活LLMs的时间序列推理能力,实现经济、灵活、高效的推理。
    • 三种对齐范式
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值