
Graph Neural Network
文章平均质量分 70
主要整理了GNN相关的一些,但不限于GNN,也会包含Graph related的一些文章。
UnknownBody
AI博士,最近一直follow大模型相关论文,每日会更新学术界论文的进展。
展开
-
Graph Learning in the Era of LLMs: A Survey from the Perspective of Data, Models, and Tasks
随着跨域文本属性图(TAG)数据(如引用网络、推荐系统、社交网络和人工智能科学)的日益普及,将图神经网络(GNN)和大型语言模型(LLM)整合到一个统一的模型架构中(如LLM作为增强器,LLM作为协作者,LLM为预测器)已成为一种有前景的技术范式。这种新的图形学习范式的核心在于GNN捕捉复杂结构关系的能力和LLM从丰富的图形文本描述中理解信息上下文的能力的协同结合。因此,我们可以利用具有丰富语义上下文的图形描述文本从根本上提高数据质量,从而根据以数据为中心的机器学习原则提高以模型为中心的方法的表示能力。原创 2025-02-07 10:00:00 · 99 阅读 · 0 评论 -
Controlled Text Generation for Large Language Model with Dynamic Attribute Graphs
受控文本生成(CTG)旨在生成具有特定期望属性的文本。在这项研究中,我们介绍了一个用于大型语言模型(LLM)的可插拔CTG框架,称为基于动态属性图的受控文本生成(DATG)。该框架利用属性评分器来评估LLM生成的句子的属性,并构建动态属性图。DATG调节关键属性词和关键反属性词的出现,在不损害模型原始能力的情况下实现有效的属性控制。我们在四个数据集上进行了两项任务的实验:毒性缓解和情绪转换,使用五个LLM作为基础模型。原创 2024-07-10 17:40:35 · 250 阅读 · 0 评论 -
EXPLORING THE POTENTIAL OF LARGE LANGUAGE MODELS IN GRAPH GENERATION
大型语言模型(LLM)在许多领域都取得了巨大的成功,最近的工作研究了将LLM用于图判别任务(如节点分类)。然而,LLM生成图的能力在文献中仍未得到探索。图生成需要LLM生成具有给定属性的图,这在现实世界中具有宝贵的应用,如药物发现,但往往更具挑战性。在本文中,我们提出了LLM4GraphGen,通过系统的任务设计和广泛的实验来探索LLM生成图的能力。原创 2024-07-09 14:57:14 · 212 阅读 · 0 评论 -
GraphInstruct: Empowering Large Language Models with Graph Understanding and Reasoning Capability
评估和增强大型语言模型(LLM)的通用能力一直是一个重要的研究课题。图形是现实世界中常见的数据结构,理解图形数据是提高通用智能的关键部分。为了评估和增强LLM的图理解能力,本文提出了一个名为GraphInstruction的基准,该基准全面包括21个经典的图推理任务,提供了不同的图生成管道和详细的推理步骤。在GraphInstruction的基础上,我们通过高效的指令调优进一步构建了GraphLM,显示出突出的图形理解能力。原创 2024-06-25 13:49:11 · 273 阅读 · 0 评论 -
MuseGraph: Graph-oriented Instruction Tuning of Large Language Models for Generic Graph Mining
在各种现实世界应用中,具有丰富属性的图对于建模互连实体和改进预测至关重要。传统的图神经网络(GNN)通常用于对属性图进行建模,当应用于不同的图任务和数据集时,每次都需要重新训练。尽管大型语言模型(LLM)的出现为自然语言处理引入了一种新的范式,但LLM在图挖掘中的生成潜力在很大程度上仍未得到充分挖掘。为此,我们提出了一个新的框架MuseGraph,它无缝集成了GNN和LLM的优势,并促进了跨不同任务和数据集的更有效和通用的图挖掘方法。原创 2024-05-20 10:23:54 · 135 阅读 · 0 评论 -
Enhancing Temporal Knowledge Graph Forecasting with Large Language Models
时间知识图谱(TKG)预测旨在基于给定的历史来预测未来的事实。最新的基于图的模型擅长捕捉TKG中的结构信息,但缺乏语义理解能力。如今,随着LLM的激增,基于LLM的TKG预测模型已经出现。然而,现有的基于LLM的模型存在三个缺点:(1)它只关注一阶历史进行预测,而忽略了高阶历史信息,导致为LLM提供的信息极其有限。(2) LLM在繁重的历史信息负载下难以获得最佳推理性能。(3) 对于TKG预测,LLM单独的时间推理能力是有限的。原创 2024-04-30 09:44:35 · 472 阅读 · 0 评论 -
Distilling Large Language Models for Text-Attributed Graph Learning
文本属性图(TAG)是连接的文本文档的图。图模型可以有效地学习标签,但它们的训练在很大程度上依赖于人工注释标签,而在许多应用程序中,人工注释标签很少甚至不可用。大型语言模型(LLM)最近在小样本和零样本TAG学习方面表现出了显著的能力,但它们存在可扩展性、成本和隐私问题。因此,在这项工作中,我们专注于通过在TAG学习中提取LLM到局部图模型的能力,将LLM和图模型与其互补的优势协同起来。原创 2024-04-22 19:12:04 · 230 阅读 · 0 评论 -
GNNAVI: Navigating the Information Flow in Large Language Models by Graph Neural Network
当带有演示的提示应用于大型语言模型(LLM)时,它们表现出强大的上下文学习(ICL)功能。然而,微调对于进一步增强它们的适应性仍然至关重要。在低数据场景中,基于提示的微调被证明是一种有效的微调方法,但对计算资源的高要求限制了其实用性。我们通过引入一种基于提示的参数有效微调(PEFT)方法来解决这个问题。GNNAVI利用对ICL信息流动态的深入了解,这表明标签词在提示中充当信息传播的锚。GNNAVI采用图形神经网络(GNN)层,通过将所需信息流硬连接到GNN中,在提示处理过程中精确地引导信息流的聚合和分布。原创 2024-04-14 22:07:59 · 69 阅读 · 0 评论 -
Advancing Graph Representation Learning with LLM: A Comprehensive Survey of Techniques
大型语言模型(LLM)与图表示学习(GRL)的集成标志着分析复杂数据结构的重大发展。这种合作利用LLM复杂的语言能力来提高图模型的上下文理解和适应性,从而拓宽GRL的范围和潜力。尽管越来越多的研究致力于将LLM集成到图领域,但明显缺乏深入分析这些模型中的核心组件和操作的全面综述。我们的调查通过提出一种新颖的分类法来填补这一空白,该分类法从新颖的技术角度将这些模型分解为主要组件和操作技术。原创 2024-04-02 17:27:25 · 76 阅读 · 0 评论 -
Large Language Model with Graph Convolution for Recommendation
近年来,人们努力在推荐中使用文本信息来更好地进行用户简介和项目特征描述。然而,文本信息有时质量很低,阻碍了其在现实应用中的有效性。随着知识和推理能力被大型语言模型(LLM)所覆盖,利用LLM成为一种很有前途的描述改进方法。然而,现有的用原始文本提示LLM的方法忽略了用户-项目交互的结构化知识,这可能会导致幻觉问题,如不一致的描述生成。为此,我们提出了一种图感知卷积LLM方法,以引出LLM来捕获用户项目图中的高阶关系。原创 2024-04-01 10:15:09 · 214 阅读 · 0 评论 -
Graph Descriptive Order Improves Reasoning with Large Language Model
近年来,大型语言模型已经在多个领域实现了最先进的性能。然而,LLM在图推理领域的进展仍然有限。我们的工作通过深入研究LLM的图推理来深入研究这一差距。在这项工作中,我们揭示了图描述的顺序对LLM的图推理性能的影响,这显著影响了LLM的推理能力。通过改变这个顺序,我们将LLM的性能从42.22%提高到70%。此外,我们引入了标度图推理基准,用于评估LLM在各种图大小下的性能,并评估LLM的图推理能力与图大小之间的关系。我们发现LLM的图推理性能不会随着图大小的增加而单调下降。原创 2024-03-26 17:41:52 · 68 阅读 · 0 评论 -
Integrating Large Language Models with Graphical Session-Based Recommendation
随着大型语言模型(LLM)的快速发展,在推荐系统中利用LLM的上下文理解能力进行了各种探索。虽然开创性的策略主要将传统的推荐任务转化为自然语言生成的挑战,但由于其特殊性,在基于会话的推荐(SBR)领域的探索相对较少。城市SBR主要由图神经网络主导,由于其能够捕捉相邻行为之间的隐式和显式关系,图神经网络已经取得了许多成功。图形的结构性质与自然语言的本质形成对比,对应LLM构成了一个重要的适应差距。原创 2024-03-25 10:44:07 · 181 阅读 · 0 评论 -
Large Language Model Meets Graph Neural Network in Knowledge Distillation
尽管最近社区披露了大型语言模型(LLM)在理解文本属性图(TAG)方面的进步和潜在应用,但LLM的高计算和存储要求以及模型推理过程中的长延迟阻碍了其在生产中的部署。同时,尽管传统的图神经网络(GNN)轻权重,善于学习图的结构特征,但它们掌握TAG中复杂语义的能力在实际应用中受到一定的限制。为了解决这些局限性,我们专注于TAG中节点分类的下游任务,并提出了一种新的图知识蒸馏框架,称为语言图知识蒸馏(LinguGKD),使用LLM作为教师模型,GNN作为学生模型进行知识蒸馏。原创 2024-03-20 10:26:15 · 125 阅读 · 0 评论 -
A Survey of Graph Meets Large Language Model: Progress and Future Directions
图在表示和分析引用网络、社交网络和生物数据等现实世界应用中的复杂关系方面发挥着重要作用。最近,在各个领域取得巨大成功的大型语言模型(LLM)也被用于与图相关的任务,以超越传统的基于图神经网络(GNN)的方法,并产生最先进的性能。在这项调查中,我们首先对现有的将LLM与图相结合的方法进行了全面的回顾和分析。首先,我们提出了一种新的分类法,根据LLM在图相关任务中所扮演的角色(即增强子、预测器和对齐组件),将现有方法组织为三类。然后,我们沿着分类学的三个类别,系统地考察了具有代表性的方法。原创 2024-01-04 11:50:26 · 713 阅读 · 0 评论 -
Exploring the Potential of Large Language Models (LLMs) in Learning on Graphs
图学习由于其在现实世界中的广泛应用而引起了极大的关注。在具有文本节点属性的图上学习最流行的管道主要依赖于图神经网络(GNN),并利用浅文本嵌入作为初始节点表示,这在一般知识和深刻的语义理解方面具有局限性。近年来,大型语言模型(LLM)已被证明具有广泛的公共知识和强大的语义理解能力,这彻底改变了现有的处理文本数据的工作流程。在本文中,我们旨在探索LLM在图机器学习中的潜力,特别是在节点分类任务中,并研究两种可能的管道:LLM作为增强器和LLM作为预测器。原创 2023-09-15 15:28:26 · 1250 阅读 · 0 评论 -
A Review on Graph Neural Network Methods in Financial Applications
金融数据具有多个组成部分和多个关系,通常以图形数据的形式表示,因为它既可以表示单个特征,也可以表示复杂的关系。由于金融市场的复杂性和波动性,在金融数据上构建的图往往是异构的或时变的,这对建模技术提出了挑战。在图建模技术中,图神经网络(GNN)模型能够处理复杂的图结构并取得良好的性能,因此可以用于解决财务任务。在这项工作中,我们对最近金融背景下的GNN模型进行了全面的回顾。我们首先对常用的财务图进行分类,并总结每个节点的特征处理步骤。原创 2023-09-05 16:40:56 · 231 阅读 · 0 评论 -
Large Graph Models: A Perspective
大型模型已成为人工智能,尤其是机器学习领域的最新突破性成就。然而,当涉及到图形时,大型模型并没有像在自然语言处理和计算机视觉等其他领域那样取得成功。为了推动大型图模型的应用,我们提出了一篇前瞻性的论文来讨论开发大型图模型所面临的挑战和机遇。首先,我们讨论了大图模型的期望特性。然后,我们从三个关键角度进行了详细的讨论:表示基础、图数据和图模型。在每一类中,我们都简要概述了最近的进展,并强调了剩余的挑战以及我们的愿景。最后,我们讨论了大型图模型的有价值的应用。原创 2023-09-01 11:07:38 · 264 阅读 · 0 评论 -
Evaluating Large Language Models on Graphs: Performance Insights and Comparative Analysis
大型语言模型(LLM)在学术界和工业界都引起了极大的兴趣。然而,LLM在图形数据中的应用仍有待探索。在这项研究中,我们评估了四个LLM在用图形数据解决几个分析问题方面的能力。我们采用了四种不同的评估指标:理解、正确性、保真度和纠正。我们的研究结果表明:1)LLM能有效地理解自然语言中的图数据,并用图拓扑推理。2) GPT模型可以生成逻辑和连贯的结果,在正确性方面优于替代方案。3) 所有接受检查的LLM都面临着结构推理方面的挑战,零样本思维链和小样本提示等技术显示出效能下降。原创 2023-08-29 10:26:52 · 157 阅读 · 0 评论 -
A Comprehensive Survey on Graph Neural Networks
本文是对《A Comprehensive Survey on Graph Neural Networks》论文的一个翻译,主要针对文字部分,插图和表格不添加,需要请看原论文。图神经网络综述摘要1. 引言2. 背景和定义A. 背景B. 定义3. 分类和框架A. 图神经网络(GNNs)分类B. 框架4. 循环图神经网络5. 卷积图神经网络A.基于谱的ConvGNNsB.基于空间的ConvGNNsC.图池化模块D.理论方面的讨论6. 图自编码器A.网络嵌入B.图生成7. 时空图神经网络8. 应用A. 数据集原创 2022-09-07 09:49:37 · 669 阅读 · 0 评论 -
Graph Data Augmentation for Graph Machine Learning: A Survey
最近,由于数据增强能够创建额外的训练数据和改进模型泛化,因此人们对图机器学习越来越感兴趣。尽管最近出现了这一热潮,但由于图数据的复杂性,非欧几里德结构带来的挑战,这一领域仍相对缺乏探索,这限制了对其他类型数据的传统增广操作的直接类比。在本文中,我们对图数据增强进行了全面和系统的综述,以结构化的方式总结了文献。我们首先根据它们修改或创建的图数据的组件对图数据扩充操作进行分类。接下来,我们将介绍图数据增强的最新进展,并按其学习目标和方法进行分类。最后,我们概述了当前尚未解决的挑战以及未来研究的方向。原创 2022-09-01 19:26:47 · 967 阅读 · 0 评论 -
Self-Supervised Anomaly Detection A Survey and Outlook
在过去几年中,异常检测是机器学习的一个子领域,主要关注罕见事件的检测,随着深度学习模型的空前增长,异常检测得到了极大的改进。最近,自监督学习的出现引发了新的异常检测算法的发展,其精度大大超过了最先进的水平。本文旨在回顾自监督异常检测的现有方法。我们介绍了常用方法的技术细节,并讨论了它们的优缺点。我们还将这些模型的性能与其他最先进的异常检测模型进行了比较。最后,我们讨论了改进现有算法的各种新方向。原创 2022-08-29 15:50:31 · 1062 阅读 · 0 评论 -
Deep Learning for Anomaly Detection: A Review
本文是对《Deep Learning for Anomaly Detection: A Review》的翻译。深度学习进行异常检测:综述摘要1 引言2 异常检测:问题复杂性和挑战2.1 主要问题复杂性2.2 深度异常检测面临的主要挑战3 解决深度异常检测的挑战3.1 前言3.2 深度异常检测的分类4 用于特征提取的深度学习5 常态性的特征表示学习5.1 特征学习的一般常态5.2 异常度量独立特征学习6 端到端异常得分学习6.1 排序模型6.2 先验驱动模型6.3 软最大似然模型6.4 端到端一类分类7 算原创 2022-08-23 17:53:12 · 1134 阅读 · 0 评论 -
Revisiting Time Series Outlier Detection: Definitions and Benchmarks
摘要1 引言2 背景3 回顾离群定义和合成标准3.1 序列数据中的行为3.2 细化连续离群值定义3.2.1 点离群3.2.2 模式离群3.3 合成离群值4 基准实验4.1 数据集描述4.2 序列数据离群检测算法4.3 结果与分析5 讨论6 结论时间序列离群点检测在过去十年中得到了广泛的研究,提出了许多先进的算法。尽管做出了这些努力,但很少有研究调查我们应该如何对现有算法进行基准测试。特别是,使用合成数据集进行评估已成为文献中的常见做法,因此,有一个通用的综合标准来对算法进行基准测试至关重要。原创 2022-08-22 15:06:52 · 1131 阅读 · 0 评论