
数据增强
文章平均质量分 94
UnknownBody
AI博士,最近一直follow大模型相关论文,每日会更新学术界论文的进展。
展开
-
Time Series Data Augmentation for Deep Learning: A Survey
深度学习最近在许多时间序列分析任务中表现出色。深度神经网络的优越性能在很大程度上依赖于大量的训练数据,以避免过拟合。然而,许多现实世界时间序列应用的标记数据可能会受到限制,例如医学时间序列中的分类和AIOps中的异常检测。作为一种提高训练数据大小和质量的有效方法,数据增强对于深度学习模型在时间序列数据上的成功应用至关重要。在本文中,我们系统地回顾了时间序列的不同数据增强方法。我们提出了综述方法的分类法,然后通过强调它们的优势和局限性为这些方法提供了结构化回顾。原创 2022-09-05 10:20:52 · 1188 阅读 · 0 评论 -
Data Augmentation techniques in time series domain: A survey and taxonomy
随着深度学习生成模型的最新进展,利用它们在时间序列领域的出色表现并不需要很长时间。用于处理时间序列的深度神经网络在很大程度上依赖于用于训练的数据集的广度和一致性。这些类型的特征在现实世界中通常并不丰富,它们通常是有限的,并且通常具有必须保证的隐私约束。因此,一种有效的方法是使用数据增强(DA)技术,通过添加噪声或置换以及生成新的合成数据来增加数据的数量。它系统地回顾了该领域的最新技术,概述了所有可用的算法,并提出了最相关研究的分类。将评估不同变体的效率;原创 2022-09-01 15:05:40 · 738 阅读 · 0 评论 -
Graph Data Augmentation for Graph Machine Learning: A Survey
最近,由于数据增强能够创建额外的训练数据和改进模型泛化,因此人们对图机器学习越来越感兴趣。尽管最近出现了这一热潮,但由于图数据的复杂性,非欧几里德结构带来的挑战,这一领域仍相对缺乏探索,这限制了对其他类型数据的传统增广操作的直接类比。在本文中,我们对图数据增强进行了全面和系统的综述,以结构化的方式总结了文献。我们首先根据它们修改或创建的图数据的组件对图数据扩充操作进行分类。接下来,我们将介绍图数据增强的最新进展,并按其学习目标和方法进行分类。最后,我们概述了当前尚未解决的挑战以及未来研究的方向。原创 2022-09-01 19:26:47 · 967 阅读 · 0 评论