
Urban and Traffic
文章平均质量分 70
该专栏,主要面向城市规划,以及交通领域,包括领域经典论文,已经在LLM背景下交通问题如何解决的最新论文。
UnknownBody
AI博士,最近一直follow大模型相关论文,每日会更新学术界论文的进展。
展开
-
Embracing Large Language Models in Traffic Flow Forecasting
交通流预测旨在根据历史交通状况和道路网络预测未来的交通流。这是智能交通系统中的一个重要问题,已经提出了许多方法。现有的工作主要集中在捕获和利用时空依赖性来预测未来的交通流量。尽管前景光明,但它们在适应交通状况的测试时间环境变化方面存在不足。为了应对这一挑战,我们建议引入大型语言模型(LLM)来帮助交通流量预测,并设计了一种名为大型语言模型增强交通流量预测器(LEAF)的新方法。LEAF采用两个分支,分别使用图和超图结构捕获不同的时空关系。这两个分支首先单独进行预训练,在测试期间,它们会产生不同的预测。原创 2025-02-11 10:00:00 · 102 阅读 · 0 评论 -
An Automatic Graph Construction Framework based on Large Language Models for Recommendation
图神经网络(GNN)已经成为从图结构数据中学习以进行推荐的最先进方法。然而,现有的基于GNN的推荐方法大多侧重于基于预定义图的模型结构和学习策略的优化,忽视了图构建阶段的重要性。早期的图构建工作通常依赖于特定的规则或众包,这些规则要么过于简单,要么过于劳动密集。鉴于其丰富的开放世界知识和卓越的推理能力,最近的工作开始利用大型语言模型(LLM)来自动化图构建。然而,它们通常存在两个局限性:(1)全局视图的不可见性(例如,忽略上下文信息)和(2)构建效率低下。原创 2025-02-02 09:00:00 · 178 阅读 · 0 评论 -
Leveraging Large Language Models (LLMs) for Traffic Management at Urban Intersections
由于环境的动态变化,城市交通管理面临着巨大的挑战,传统算法无法快速实时适应这种环境并预测可能的冲突。本研究探讨了大型语言模型 (LLM)(特别是 GPT-4o-mini)改善城市十字路口交通管理的能力。我们使用 GPT-4o-mini 来针对各种基本场景实时分析、预测位置、检测和解决十字路口的冲突。本研究的主要结果是调查LLM是否能够通过提供实时分析来逻辑推理和理解场景,从而提高交通效率和安全性。该研究强调了LLM在城市交通管理领域创造更智能、更具适应性的系统的潜力。原创 2024-12-09 10:15:00 · 151 阅读 · 0 评论 -
The Use of Multimodal Large Language Models to Detect Objects from Thermal Images: Transportation
热成像数据与多模态大型语言模型 (MLLM) 的集成为提高自动驾驶系统和许多智能交通系统 (ITS) 应用的安全性和功能性提供了一个令人兴奋的机会。本研究调查了 MLLM 是否可以理解来自 RGB 和热像仪的复杂图像并直接检测物体。我们的目标是 1) 评估 MLLM 从各种集合中学习信息的能力,2) 检测物体并识别热像仪中的元素,3) 确定两个独立的模态图像是否显示相同的场景,以及 4) 使用不同的模态学习所有物体。研究结果表明,GPT-4 和 Gemini 在检测和分类热图像中的物体方面都很有效。原创 2024-11-09 09:30:00 · 117 阅读 · 0 评论 -
Towards Responsible and Reliable Traffic Flow Prediction with Large Language Models
交通预测对智能交通系统至关重要。得益于深度学习在捕获交通数据潜在模式方面的强大功能,它取得了重大进展。然而,最近的深度学习架构需要复杂的模型设计,并且缺乏对从输入数据到预测结果的映射的直观理解。由于交通数据的复杂性和深度学习模型固有的不透明性,在交通预测模型中实现准确性和责任性仍然是一个挑战。为了应对这些挑战,我们提出了一种具有大型语言模型的负责任和可靠的交通流量预测模型(R2TLLM),该模型利用大型语言模型(LLM)生成负责任的交通预测。原创 2024-07-25 15:02:52 · 194 阅读 · 0 评论 -
AGENTSCODRIVER: Large Language Model Empowered Collaborative Driving with Lifelong Learning
联网和自动驾驶最近经历了快速发展。然而,目前的自动驾驶系统主要基于数据驱动的方法,在可解释性、泛化和持续学习能力方面存在重大缺陷。此外,单车自动驾驶系统缺乏与其他车辆的协作和协商能力,这对驾驶安全和效率至关重要。为了有效地解决这些问题,我们利用大型语言模型(LLM)开发了一个名为AGENTSCODRIVER的新框架,使多辆车能够进行协同驾驶。AGENTSCODRIVER由五个模块组成:观察模块、推理引擎、认知记忆模块、强化反射模块和交流模块。原创 2024-07-16 15:59:18 · 120 阅读 · 0 评论 -
Large Language Models for Next Point-of-Interest Recommendation
下一个兴趣点(POI)推荐任务是在给定用户的历史数据的情况下预测用户的下一次POI访问。基于位置的社交网络数据通常用于下一个POI推荐任务,但也面临挑战。一个经常被忽视的挑战是如何有效地使用基于位置的社交网络数据中存在的丰富上下文信息。以前的方法受到其数值性质的限制,未能解决这一挑战。在本文中,我们提出了一个使用预训练的大型语言模型来应对这一挑战的框架。我们的框架允许我们以原始格式保存异构的基于位置的社交网络数据,从而避免上下文信息的丢失。此外,由于包含了常识性知识,我们的框架能够理解上下文信息的内在含义。原创 2024-07-01 16:22:47 · 214 阅读 · 0 评论 -
LC-LLM: Explainable Lane-Change Intention and Trajectory Predictions with Large Language Models
为了确保在动态环境中安全驾驶,自动驾驶汽车应具备提前准确预测周围车辆变道意图并预测其未来轨迹的能力。现有的运动预测方法有足够的改进空间,特别是在长期预测精度和可解释性方面。在本文中,我们通过提出LC-LLM来应对这些挑战,这是一种可解释的车道变化预测模型,利用了大型语言模型(LLM)强大的推理能力和自我解释能力。从本质上讲,我们将变道预测任务重新表述为一个语言建模问题,以自然语言处理异构驾驶场景信息作为LLM的输入提示,并使用监督微调技术专门为我们的变道预测工作定制LLM。原创 2024-06-29 12:05:40 · 284 阅读 · 0 评论 -
From Words to Routes: Applying Large Language Models to Vehicle Routing
LLM通过自然语言任务描述在机器人技术(如操纵和导航)方面取得了令人印象深刻的进展。LLM在这些任务中的成功让我们想知道:LLM用自然语言任务描述解决车辆路线问题(VRP)的能力是什么?在这项工作中,我们分三个步骤来研究这个问题。首先,我们构建了一个包含21种类型的单车或多车路线问题的数据集。其次,我们评估了LLM在文本到代码生成的四种基本提示范式中的性能,每种范式都涉及不同类型的文本输入。原创 2024-06-03 10:21:53 · 113 阅读 · 0 评论 -
UrbanGPT: Spatio-Temporal Large Language Models
时空预测旨在预测和深入了解城市环境在时间和空间上不断变化的动态。其目的是预测城市生活各个方面的未来模式、趋势和事件,包括交通、人口流动和犯罪率。尽管已经做出了许多努力来开发用于对时空数据进行准确预测的神经网络技术,但重要的是要注意,这些方法中的许多在很大程度上依赖于具有足够的标记数据来生成精确的时空表示。不幸的是,数据稀缺的问题在实际的城市传感场景中普遍存在。在某些情况下,从下游场景中收集任何标记数据变得很有挑战性,这进一步加剧了问题。原创 2024-05-17 15:18:12 · 236 阅读 · 0 评论 -
CHATATC: Large Language Model-Driven Conversational Agents for Supporting Strategic Air Traffic Flow
通过ChatGPT等公开工具,生成人工智能(AI)和大型语言模型(LLM)迅速流行起来。人类用户与ChatGPT等计算机应用程序之间的自然互动,以及强大的摘要和文本生成功能,推动了LLM在个人和专业用途中的应用。鉴于这种生成人工智能工具的广泛使用,在这项工作中,我们研究了如何在非安全关键的战略性交通流管理环境中部署这些工具。具体而言,我们根据2000年至2023年期间地面延迟计划(GDP)发布的大量历史数据集,训练LLM CHATATC,该数据集包括80000多个GDP实施、修订和取消。原创 2024-05-04 12:25:57 · 94 阅读 · 0 评论 -
How Secure Are Large Language Models (LLMs) for Navigation in Urban Environments?
在机器人和自动化领域,基于大型语言模型(LLM)的导航系统最近表现出了令人印象深刻的性能。然而,这些系统的安全方面受到的关注相对较少。本文率先探索了城市户外环境中基于LLM的导航模型的漏洞,鉴于该技术在自动驾驶、物流和应急服务中的广泛应用,这是一个关键领域。具体来说,我们介绍了一种新的导航提示后缀(NPS)攻击,该攻击通过将梯度派生的后缀附加到原始导航提示上来操纵基于LLM的导航模型,从而导致错误的操作。我们在基于LLM的导航模型上进行了全面的实验,该导航模型使用各种LLM进行推理。原创 2024-04-07 09:41:01 · 90 阅读 · 0 评论 -
Large Language Models as Urban Residents: An LLM Agent Framework for Personal Mobility Generation
本文介绍了一种新的方法,将大型语言模型(LLM)集成到代理框架中,以实现灵活高效的个人移动性生成。LLM通过有效地处理语义数据并在建模各种任务时提供多功能性,克服了以前模型的局限性。我们的方法解决了将LLM与现实世界的城市流动数据相一致的关键需求,重点关注三个研究问题:将LLM和丰富的活动数据相一致,制定可靠的活动生成策略,以及探索LLM在城市流动中的应用。原创 2024-03-30 10:39:53 · 189 阅读 · 0 评论 -
Synergizing Spatial Optimization with Large Language Models for Open-Domain Urban Itinerary Planning
在本文中,我们首次提出了城市步行的开放域城市行程规划(OUIP)任务,该任务直接根据自然语言描述的用户请求生成行程。OUIP不同于传统的行程规划,后者限制了用户表达更详细的需求,阻碍了真正的个性化。最近,大型语言模型(LLM)在处理各种任务方面显示出了潜力。然而,由于非实时信息、知识不完整和空间意识不足,他们无法在OUIP中独立提供令人满意的用户体验。有鉴于此,我们介绍了ItiNera,这是一个OUIP系统,它将空间优化与大型语言模型(LLM)协同起来,提供基于用户需求定制城市行程的服务。原创 2024-03-25 15:52:09 · 183 阅读 · 0 评论 -
Spatial-Temporal Large Language Model for Traffic Prediction
交通预测是智能交通系统的一个关键组成部分,它致力于利用历史数据预测特定地点的未来交通。尽管现有的交通预测模型通常强调开发复杂的神经网络结构,但其准确性并没有得到相应的提高。近年来,大型语言模型(LLM)在时间序列分析方面表现出了卓越的能力。与现有模型不同,LLM主要通过参数扩展和广泛的预训练来发展,同时保持其基本结构。在本文中,我们提出了一种用于交通预测的时空大语言模型(ST-LLM)。原创 2024-03-06 09:56:46 · 466 阅读 · 0 评论 -
A Survey on the Applications of Frontier AI, Foundation Models, and Large Language Models to ITS
本文探讨了前沿人工智能、基础模型和大语言模型在智能交通系统(ITS)领域的变革影响,强调了它们在推进交通智能、优化交通管理和促进智慧城市实现方面的整体作用。前沿人工智能是指人工智能技术的前沿,包括该领域的最新进展、创新和实验技术,尤其是人工智能基础模型和LLM。基础模型,如GPT-4,是大型通用人工智能模型,为广泛的应用提供了基础。它们的特点是多功能性和可扩展性。LLM是从微调基础模型中获得的,特别侧重于处理和生成自然语言。他们擅长语言理解、文本生成、翻译和摘要等任务。原创 2024-02-27 14:55:27 · 495 阅读 · 0 评论 -
TransportationGames: Benchmarking Transportation Knowledge of (Multimodal) Large Language Models
大型语言模型(LLM)和多模态大型语言模型已显示出出色的通用能力,甚至在法律、经济、交通和医学等许多专业领域都表现出了适应性。目前,已经提出了许多特定领域的基准测试来验证(M)LLM在特定领域中的性能。在各个领域中,交通运输在现代社会中发挥着至关重要的作用,因为它影响着数十亿人的经济、环境和生活质量。然而,目前尚不清楚LLM拥有多少交通知识,以及它们是否能够可靠地执行与交通相关的任务。原创 2024-02-19 15:14:36 · 378 阅读 · 0 评论 -
LARGE LANGUAGE MODELS AS TRAFFIC SIGNAL CONTROL AGENTS: CAPACITY AND OPPORTUNITY
交通信号控制对于通过调节红绿灯相位来优化道路网络的效率至关重要。现有的研究主要集中在基于启发式或强化学习(RL)的方法上,这些方法往往缺乏在不同交通场景中的可转移性,并且具有较差的可解释性。本文介绍了一种利用大型语言模型(LLM)执行交通信号控制任务的新方法LLMLight。通过利用LLM令人印象深刻的泛化和零样本推理能力,LLMLight执行了一个人性化的决策过程,以实现高效的交通管理。具体来说,该框架首先将任务描述、当前交通状况和先验知识组合到提示中。原创 2024-01-26 11:36:40 · 583 阅读 · 0 评论