
LLM for Graph
文章平均质量分 68
UnknownBody
AI博士,最近一直follow大模型相关论文,每日会更新学术界论文的进展。
展开
-
AnomalyLLM: Few-shot Anomaly Edge Detection for Dynamic Graphs using Large Language Models
检测动态图的异常边缘旨在识别明显偏离正常模式的边缘,并可应用于各种领域,例如网络安全、金融交易和 AIOps。随着时间的推移,异常边缘的类型不断涌现,每种类型的标记异常样本都很少。当前方法要么旨在检测随机插入的边缘,要么需要足够的标记数据进行模型训练,这损害了它们在实际应用中的适用性。在本文中,我们通过配合大型语言模型 (LLM) 中编码的丰富知识来研究这个问题,并提出了一种方法,即 AnomalyLLM。原创 2024-09-17 11:24:12 · 359 阅读 · 0 评论 -
A Survey of Large Language Models for Graphs
图形是一种重要的数据结构,用于表示实际场景中的关系。先前的研究已经确定,图神经网络 (GNN) 在以图为中心的任务(例如链接预测和节点分类)中提供了令人印象深刻的结果。尽管取得了这些进步,但数据稀疏和泛化能力有限等挑战仍然存在。最近,大型语言模型 (LLM) 在自然语言处理中受到了关注。他们在语言理解和总结方面表现出色。将 LLM 与图学习技术集成作为提高图学习任务性能的一种方式引起了人们的兴趣。原创 2024-09-16 10:45:03 · 245 阅读 · 0 评论 -
Graph Machine Learning in the Era of Large Language Models (LLMs)
图在表示社交网络、知识图和分子发现等各个领域的复杂关系方面发挥着重要作用。随着深度学习的出现,图神经网络(GNN)已经成为图机器学习(Graph ML)的基石,促进了图结构的表示和处理。最近,LLM在语言任务中表现出了前所未有的能力,并被广泛应用于计算机视觉和推荐系统等各种应用中。这一显著的成功也引起了将LLM应用于图域的兴趣。人们越来越努力地探索LLM在提高Graph ML的泛化能力、可转移性和少镜头学习能力方面的潜力。原创 2024-08-23 15:46:21 · 135 阅读 · 0 评论 -
A Survey of Large Language Models on Generative Graph Analytics: Query, Learning, and Applications
图是一种基本的数据模型,用于表示社会和自然中的各种实体及其复杂关系,如社交网络、交通网络、金融网络和生物医学系统。最近,大型语言模型(LLM)展示了强大的泛化能力,可以处理各种NLP和多模态任务,以回答用户的任意问题和特定领域的内容生成。与图学习模型相比,LLM在解决泛化图任务的挑战方面具有优越的优势,因为它消除了训练图学习模型的需要,降低了手动注释的成本。在这项调查中,我们对现有的关于图形数据的LLM研究进行了全面的调查,总结了先进LLM模型解决的相关图形分析任务,并指出了现有的剩余挑战和未来的方向。原创 2024-08-23 15:33:04 · 229 阅读 · 0 评论 -
Parameter-Efficient Tuning Large Language Models for Graph Representation Learning
富含文本的图在节点和边上显示了丰富的文本信息,在各种现实世界的业务应用程序中都很普遍。大型语言模型(LLM)在理解文本方面表现出了非凡的能力,这也为在富含文本的图中进行更具表现力的建模带来了潜力。尽管有这些能力,但将LLM有效地应用于图上的表示学习是一项重大挑战。最近,LLM的参数高效微调方法以最小的时间和内存消耗实现了高效的新任务泛化。受此启发,我们引入了图感知参数高效微调-GPEFT,这是一种在富含文本的图上使用LLM进行高效图表示学习的新方法。原创 2024-06-28 10:21:51 · 168 阅读 · 0 评论 -
MuseGraph: Graph-oriented Instruction Tuning of Large Language Models for Generic Graph Mining
在各种现实世界应用中,具有丰富属性的图对于建模互连实体和改进预测至关重要。传统的图神经网络(GNN)通常用于对属性图进行建模,当应用于不同的图任务和数据集时,每次都需要重新训练。尽管大型语言模型(LLM)的出现为自然语言处理引入了一种新的范式,但LLM在图挖掘中的生成潜力在很大程度上仍未得到充分挖掘。为此,我们提出了一个新的框架MuseGraph,它无缝集成了GNN和LLM的优势,并促进了跨不同任务和数据集的更有效和通用的图挖掘方法。原创 2024-05-20 10:23:54 · 135 阅读 · 0 评论 -
GraphEdit: Large Language Models for Graph Structure Learning
图结构学习(GSL)专注于通过生成新的图结构来捕获图结构数据中节点之间的内在依赖性和交互。图神经网络(GNN)已成为有前途的GSL解决方案,利用递归消息传递对节点间的相互依赖性进行编码。然而,许多现有的GSL方法在很大程度上依赖于显式图结构信息作为监督信号,这使得它们容易受到数据噪声和稀疏性等挑战的影响。在这项工作中,我们提出了GraphEdit,这是一种利用大型语言模型(LLM)来学习图结构数据中复杂节点关系的方法。原创 2024-03-15 14:23:51 · 137 阅读 · 0 评论