
LLM for SQL
文章平均质量分 66
UnknownBody
AI博士,最近一直follow大模型相关论文,每日会更新学术界论文的进展。
展开
-
A Survey on Employing Large Language Models for Text-to-SQL Tasks
关系数据库中存储的数据量不断增加,导致各个部门需要高效查询和利用这些数据。但是,编写 SQL 查询需要专业知识,这对尝试访问和查询数据库的非专业用户构成了挑战。文本到 SQL 解析通过将自然语言查询转换为 SQL 查询来解决此问题,从而使非专家用户更容易访问数据库。为了利用大型语言模型 (LLM) 的最新发展,出现了一系列新方法,主要侧重于提示工程和微调。本调查全面概述了文本到 SQL 任务中的 LLM,讨论了基准数据集、提示工程、微调方法和未来的研究方向。原创 2024-09-11 17:29:53 · 193 阅读 · 0 评论 -
PURPLE: Making a Large Language Model a Better SQL Write
大型语言模型(LLM)技术在自然语言到SQL(NL2SQL)的翻译中发挥着越来越重要的作用。通过广泛的语料库训练的LLM具有很强的自然语言理解和基本的SQL生成能力,而无需针对NL2SQL任务进行额外的调整。现有的基于LLM的NL2SQL方法试图通过增强LLM来改进翻译,并强调对用户意图的理解。然而,LLM有时由于缺乏组织复杂逻辑运算符组合的知识而无法生成适当的SQL。一种很有前途的方法是通过演示输入LLM,其中包括来自各种数据库的已知NL2SQL翻译。LLM可以从给定任务的输入演示中学习组织运算符组合。原创 2024-06-27 15:49:06 · 178 阅读 · 0 评论 -
Benchmarking the Text-to-SQL Capability of Large Language Models: A Comprehensive Evaluation
大型语言模型(LLM)已成为推进文本到SQL任务的强大工具,显著优于传统方法。然而,作为一个新兴的研究领域,对于最佳的提示模板和设计框架仍然没有达成共识。此外,现有的基准测试没有充分探讨LLM在文本到SQL过程的各个子任务中的性能,这阻碍了LLM认知能力的评估和基于LLM的解决方案的优化。为了解决上述问题,我们首先构建了一个新的数据集,旨在降低LLM中过拟合的风险。然后,我们制定了五个评估任务,以全面评估在整个文本到SQL过程中各种LLM的不同方法的性能。原创 2024-05-23 09:55:50 · 187 阅读 · 0 评论 -
Structure Guided Large Language Model for SQL Generation
生成准确的结构化查询语言(SQL)是一个长期存在的问题,尤其是在将用户的语义查询与结构化数据库进行匹配,然后生成结构化SQL时。现有模型通常将查询和数据库模式输入到LLM中,并依赖LLM执行语义结构匹配和生成结构化SQL。然而,这种解决方案忽略了用户查询和数据库中的结构信息,这些信息可用于增强结构化SQL的生成。这种疏忽可能导致SQL生成不准确或不可执行。为了充分利用该结构,我们提出了一个结构到SQL的框架,该框架利用固有的结构信息来改进LLM的SQL生成。原创 2024-05-16 10:13:35 · 110 阅读 · 0 评论 -
Investigating the Impact of Data Contamination of Large Language Models in Text-to-SQL Translation
理解文本描述以生成代码似乎是在零样本场景中实现的指令-遵循大型语言模型(LLM)的能力。然而,这种翻译能力极有可能受到看到目标文本描述和相关代码的影响。这种影响被称为数据污染。在这项研究中,我们研究了数据污染对GPT3.5在文本到SQL代码生成任务中的性能的影响。因此,我们引入了一种新的方法来检测GPT中的数据污染,并使用已知的Spider数据集和我们新的不熟悉的数据集Termite来检查GPT-3.5的文本到SQL的性能。原创 2024-04-18 19:22:34 · 65 阅读 · 0 评论