SEMANTIC UNCERTAINTY: LINGUISTIC INVARIANCES FOR UNCERTAINTY ESTIMATION
我们介绍了一种测量大型语言模型中不确定性的方法。对于问答等任务,了解何时可以信任基础模型的自然语言输出至关重要。我们证明,由于“语义对等”,测量自然语言中的不确定性是具有挑战性的——不同的句子可能意味着同一件事。为了克服这些挑战,我们引入了语义熵——一种融合了共享意义所创造的语言不变性的熵。我们的方法是无监督的,只使用一个模型,不需要对“现成的”语言模型进行修改。在综合消融研究中,我们发现语义熵比可比基线更能预测问答数据集的模型准确性。
原创
2024-09-03 14:17:33 ·
346 阅读 ·
0 评论