本文中粗略的介绍当前所有的深度学习平台,总共48个,并添加了超链接,有关各平台的详细介绍,请点击链接进行查阅。部分链接需要翻墙。
掉下一款平台在这里补充一下:
Pytorch:2017 年初,Facebook 在机器学习和科学计算工具 Torch 的基础上,针对 Python 语言发布了一个全新的机器学习工具包 PyTorch。
1. Theano:来自蒙特利尔大学MILA实验室,由Python编写的CPU / GPU符号表达式深度学习编译器。
2. Torch: 以lua做为编程语言,来自Ronan Collobert,Clement Farabet和Koray Kavukcuoglu)支持主流的机器学习算法,提供类似Matlab的环境。
3. CNTK -计算网络工具包,是Microsoft Research使用的统一的深入学习工具包。
4. Caffe: Caffe是一个以表达,速度和模块化为重心的深入学习框架。
5. Tensorflow: TensorFlow™是一个开源软件库,用于使用数据流图进行数值计算。
6. MXNet: MXNet是一个旨在提高效率和灵活性的深入学习框架。
7. Blocks :用于训练神经网络的Theano框架
8. Lasagne: Lasagne是一个基于Theano,用于建立和训练神