
MATLAB创新性滤波方法
文章平均质量分 85
MATLAB下的自适应卡尔曼滤波、平方根卡尔曼滤波、改进卡尔曼滤波、改进粒子滤波等的创新性滤波方法
优惠券已抵扣
余额抵扣
还需支付
¥49.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
MATLAB卡尔曼
所有代码如运行有问题,可私信博主
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
《MATLAB创新性滤波算法》专栏目录,持续更新中……
MATLAB创新性滤波算法》专栏旨在分享具有一定创新性的滤波方法,并配有适当的MATLAB例程供读者参考。为了保证一定的新颖性、创新性,在编辑时耗费了大量的时间和精力,因此设置为付费专栏,以下是专栏的目录。原创 2024-12-30 08:43:07 · 704 阅读 · 0 评论 -
【互补滤波】加速度计与陀螺仪数据的互补滤波,用于估计角度,公式分析与MATLAB例程
该MATLAB程序实现了互补滤波器(Complementary Filter)用于融合陀螺仪和加速度计数据,以估计物体姿态角。程序通过仿真生成陀螺仪和加速度计的噪声数据,对比展示了仅陀螺仪积分、仅加速度计测量以及互补滤波融合三种方法的性能差异。结果显示互补滤波器能有效结合陀螺仪的高频响应特性和加速度计的低频稳定性,显著降低姿态估计误差(RMSE)。程序还分析了不同滤波系数α的影响,并提供了频率特性曲线,直观展示了滤波器的工作原理。订阅后可获取完整代码,直接运行即可复现实验结果。原创 2025-07-17 09:33:12 · 554 阅读 · 0 评论 -
【MATLAB代码】温湿度多传感器滤波,使用卡尔曼滤波对多个温度传感器和湿度传感器的数值进行滤波,滤波结果输出图像,并于平均值的误差进行对比,附完整代码
本文提出一种基于卡尔曼滤波的多传感器温湿度数据融合方法,通过MATLAB实现4个温度传感器和5个湿度传感器的动态数据滤波。仿真结果显示,卡尔曼滤波较传统均值法显著降低误差(温度RMSE 0.35 vs 0.42,湿度RMSE 0.72 vs 0.89)。算法包含状态预测、多传感器迭代更新环节,有效抑制噪声和漂移,并提供实时融合接口。可视化曲线和柱状图直观对比了滤波效果,验证了该方法在硬件在线应用中的可行性,为多传感器系统提供了一种高精度的动态补偿方案。原创 2025-07-15 09:51:56 · 360 阅读 · 0 评论 -
【matlab代码】轨迹漂移时,利用终点位置的轨迹校正,matlab例程,可用于降低惯导漂移带来的误差,适用于三维空间|附完整代码
本文所述的代码可用于模拟和校正三维惯性导航系统(INS)的轨迹漂移问题。通过线性分配终点误差,实现对累积漂移的补偿。为INS漂移提供一个非滤波的思路。原创 2025-06-27 10:26:01 · 273 阅读 · 0 评论 -
基于Versoria函数优化协方差更新的改进扩展卡尔曼滤波(MVC-EKF)与经典EKF的对比,附matlab源代码|订阅专栏后可查看完整代码
本代码实现了基于Versoria函数优化协方差更新的改进扩展卡尔曼滤波(MVC-EKF),并与传统扩展卡尔曼滤波(EKF)进行对比。代码通过一维非线性运动模型仿真,展示了MVC-EKF在处理含异常值观测数据时的鲁棒性优势,适用于目标跟踪、导航定位等状态估计场景。原创 2025-06-27 10:25:00 · 137 阅读 · 0 评论 -
【MATLAB代码】 基于MVC(Max Versoria Criterion)的EKF和经典EKF的对比,例程用于二维平面的运动估计,订阅专栏后可直接获得完整源代码
本文提出一种基于Versoria函数改进的扩展卡尔曼滤波(MVC-EKF)算法,通过引入Versoria函数权重调整机制,有效提升传统EKF在非高斯噪声条件下的鲁棒性。仿真实验通过二维运动状态估计,对比了MVC-EKF与传统EKF的性能。结果显示:在存在异常噪声干扰时,MVC-EKF的均方根误差降低约30%,峰值误差减少50%,表现出更强的抗干扰能力。误差曲线表明,MVC-EKF对测量异常值具有更好的鲁棒性,验证了该算法在处理非高斯噪声方面的优势。原创 2025-06-26 09:46:32 · 107 阅读 · 0 评论 -
【MATLAB代码】基于MVC的EKF和经典EKF对三维非线性状态的滤波,提供滤波值对比、误差对比,应对跳变的观测噪声进行优化。订阅专栏后可直接查看完整代码
本文实现了一种基于Versoria函数的改进扩展卡尔曼滤波算法(MVC-EKF),用于三维运动状态估计。通过引入Versoria函数优化协方差更新过程,算法在测量值存在异常干扰(10-30时间步)时表现出更强的鲁棒性。与经典EKF相比,MVC-EKF的估计误差显著降低,尤其在异常值干扰时段保持更稳定的性能。仿真结果显示,改进算法在三维状态估计中各维度误差均优于传统方法,验证了其抗干扰能力。代码可直接在MATLAB中运行,包含完整的状态曲线对比和误差分析模块。原创 2025-06-25 10:48:44 · 34 阅读 · 0 评论 -
【MATLAB代码】三维IEKF(迭代扩展卡尔曼滤波),应对观测协方差矩阵不准确时的高精度滤波,与未滤波、经典EKF的对比,非线性状态方程与观测方程
本文提出了一种三维迭代扩展卡尔曼滤波(IEKF)算法,用于非线性系统的状态估计。通过MATLAB仿真验证了该算法在观测噪声协方差矩阵不准确情况下的性能。结果表明,IEKF相较于传统EKF具有更高的估计精度,其均方误差明显降低。程序实现了状态预测、迭代更新和收敛检测等核心功能,并提供了三轴状态估计、误差对比及统计特性的可视化分析。该算法通过动态线性化和牛顿-拉夫森迭代优化了状态估计过程,在非线性系统中表现出更好的收敛性和鲁棒性。原创 2025-06-23 10:42:22 · 650 阅读 · 0 评论 -
【MATLAB代码】 基于MVC(Max Versoria Criterion)和MCC的EKF,两种算法对比,例程用于二维平面的运动估计,订阅专栏后可直接获得完整源代码
本文提出了一种基于Versoria函数(MVC)和最大相关熵准则(MCC)的扩展卡尔曼滤波(EKF)算法,用于解决二维平面运动目标跟踪中的非高斯噪声问题。通过MATLAB仿真对比了EKF、MCC-EKF和MVC-EKF三种算法的性能。结果显示,在存在观测异常值干扰的情况下,MVC和MCC方法均能有效提高状态估计的鲁棒性,其中MVC-EKF表现更优。实验包含100个时间步的仿真,在10-30步间加入强噪声模拟异常干扰,验证了算法在非理想观测条件下的有效性。原创 2025-06-21 10:48:27 · 107 阅读 · 0 评论 -
【python】基于MCC(最大相关熵)的卡尔曼滤波的python代码,一维滤波,应对观测数据突变,附完整代码
本代码实现了最大相关熵卡尔曼滤波(MCC-KF)与经典卡尔曼滤波(KF)的对比仿真,重点验证MCC-KF在存在异常观测值场景下的鲁棒性改进。通过高斯核函数动态加权残差,MCC-KF能有效抑制异常值对状态估计的影响。原创 2025-06-09 11:12:26 · 255 阅读 · 0 评论 -
【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优势。原创 2025-06-09 11:09:41 · 901 阅读 · 0 评论 -
【MATLAB代码】基于MCC(最大相关熵)的EKF,一维滤波,用于解决观测噪声的异常|附完整代码,订阅专栏后可直接查看
本文所述的代码实现了一种基于最大相关熵准则(Maximum Correntropy Criterion, MCC)的鲁棒性卡尔曼滤波算法(MCC-KF),重点解决传统卡尔曼滤波在观测噪声存在异常值时估计精度下降的问题。通过引入高斯核函数对残差进行加权处理,有效降低了异常观测值对状态估计的干扰。原创 2025-06-07 19:09:57 · 471 阅读 · 0 评论 -
MATLAB代码|遗传算法(GA)与粒子滤波(PF)结合|三维滤波|状态量和观测量都是三维的|附完整的MATLAB代码
本文介绍了一种结合遗传算法(GA)与粒子滤波(PF)的状态估计方法,通过MATLAB代码展示了其实现过程。该方法旨在解决传统粒子滤波中的粒子退化问题,并提升全局优化能力。代码核心包括参数初始化、粒子滤波流程、遗传算法重采样机制以及性能评估。遗传算法通过选择、交叉和变异操作改进重采样过程,增加粒子多样性,从而提升状态估计精度。运行结果显示,GA-PF方法能够有效跟踪三维状态量,并通过误差分析验证了其优越性。代码提供了完整的MATLAB实现,可直接运行并生成状态估计对比图和误差曲线。原创 2025-05-19 10:23:43 · 665 阅读 · 0 评论 -
基于 MATLAB 的粒子滤波算法实现示例,用于处理手机传感器数据并估计电梯运行参数。
通过调用智能手机内置传感器并结合粒子滤波算法,可以有效提高电梯运行参数的测量准确性。实验结果表明,该方法能够显著降低测量误差,为电梯运行监测提供了一种便捷、低成本的技术手段。如需帮助,或有导航、定位滤波相关的代码定制需求,请点击下方卡片联系作者。原创 2025-02-12 15:37:44 · 382 阅读 · 0 评论 -
【matlab创新性滤波代码】平方根扩展卡尔曼滤波(SR EKF)例程,三维非线性系统的滤波,提供完整代码
三维的非线性扩展卡尔曼滤波(EKF)改进而来的平方根卡尔曼滤波(SRKF),代码的数值稳定性得到了显著提升,特别适合高维系统或条件数较差的场景。本文给出完整例程,订阅专栏后可获得。原创 2025-02-08 10:42:23 · 271 阅读 · 0 评论 -
三维粒子滤波(Particle Filter)MATLAB例程,估计三维空间中匀速运动目标的位置(x, y, z),提供下载链接
本 MATLAB 代码实现了三维粒子滤波(Particle Filter)算法,旨在估计在三维空间中以匀速运动的目标的位置(x, y, z)。该程序生成真实运动轨迹及带噪声的观测数据,并使用粒子滤波技术进行状态估计,最终通过可视化展示真实轨迹、观测数据与估计结果。原创 2025-02-06 10:56:39 · 441 阅读 · 0 评论 -
维度可变的UKF(无迹卡尔曼滤波),附有完整源代码
初始化清空工作区和命令窗口,固定随机数种子以确保结果可重现。定义时间序列和状态维度(dim),可以灵活设置至任意值,以适应特定应用。设置过程和观测噪声的协方差矩阵,初始化状态向量和协方差矩阵,并分配观测值的存储空间。运动模型通过迭代生成真实状态、未滤波状态和观测值。真实状态保持线性更新,未滤波状态添加过程噪声,观测值为真实状态的平方加上观测噪声。无迹卡尔曼滤波(UKF)在循环中进行UKF的预测和更新步骤:计算sigma点和权重,以捕捉状态的分布特征。原创 2025-01-16 21:46:06 · 134 阅读 · 0 评论 -
EKF,自动匹配维度,完整的MATLAB代码
这段代码实现了一个扩展卡尔曼滤波的完整流程,包含了滤波模型的初始化、运动模型的模拟、EKF的预测与更新步骤、结果的绘图和误差的输出。通过这种方式,可以有效地对动态系统进行状态估计,验证EKF在处理非线性观测中的有效性。如需帮助,或有导航、定位滤波相关的代码定制需求,请点击下方卡片联系作者。原创 2025-01-17 10:31:31 · 194 阅读 · 0 评论 -
增广卡尔曼滤波AKF的要点分析
增广卡尔曼滤波(AKF)是一种适合于同时估计状态和额外参数的有效滤波器,特别是在处理非线性动态系统时。通过适当的线性化过程,AKF能够提供对动态系统的准确估计和跟踪。上述代码示例给出了AKF的基本实现,可以根据具体应用进行扩展和修改。如需帮助,或有导航、定位滤波相关的代码定制需求,请点击下方卡片联系作者。原创 2025-01-16 10:43:22 · 392 阅读 · 0 评论 -
EKF和KF的区别(不是有F和H的就是经典KF、有雅克比的就是EKF)
在信号处理和控制系统中,卡尔曼滤波(Kalman Filter, KF)是一种广泛应用的递归算法,用于估计动态系统的状态。扩展卡尔曼滤波(Extended Kalman Filter, EKF)则是对经典卡尔曼滤波的扩展,主要用于处理非线性系统的状态估计。尽管两者有相似的基本思想,但它们之间存在一些关键的区别。原创 2025-01-08 14:46:55 · 310 阅读 · 0 评论 -
CKF的效果比EKF更差的原因分析
在选择使用 CKF 还是 EKF 时,需要综合考虑系统的非线性程度、计算资源、实现复杂性和对实时性的要求。如果系统较为复杂且对精度有较高要求,CKF 可能更优;如果计算资源有限或系统相对简单,EKF 可能是更合适的选择。原创 2025-01-07 10:14:32 · 132 阅读 · 0 评论 -
结合长短期记忆网络(LSTM)和无迹卡尔曼滤波器(UKF)的技术在机器人导航和状态估计中的应用前景
结合长短期记忆网络(LSTM)和无迹卡尔曼滤波器(UKF)的技术在机器人导航和状态估计中具有广泛的应用前景。原创 2024-12-31 10:20:09 · 1515 阅读 · 0 评论 -
EKF 自动匹配维度 MATLAB代码
该MATLAB代码实现了扩展卡尔曼滤波(EKF)算法,用于对多维状态进行估计和滤波。代码由Evand编写,旨在处理具有过程噪声和观测噪声的动态系统。通过对比未滤波状态和EKF估计值,展示了滤波效果。原创 2024-12-27 18:48:44 · 261 阅读 · 0 评论 -
n维的线性卡尔曼滤波代码,MATLAB,从1维~100维可自动调节
一个适用于任意维度的线性卡尔曼滤波 MATLAB 代码示例。该代码支持从 1 维到 100 维的自动调节。原创 2024-12-26 14:29:55 · 308 阅读 · 0 评论 -
一维、线性卡尔曼滤波的例程(MATLAB)
初始化部分清空工作区及命令行:使用clearclc和close all清理环境。随机数种子:通过rng(0)设置固定的随机数种子,以确保结果可重复。参数设置T:采样率,设置为1。t:构建时间序列,范围为1到100。Q和R:分别定义系统噪声和观测噪声的方差。P:初始状态协方差。这段代码展示了线性卡尔曼滤波在一维状态估计中的应用,适用于需要在噪声环境中进行可靠状态估计的场景。通过可视化结果,用户可以直观地观察到滤波的效果和性能。原创 2024-12-26 13:05:24 · 373 阅读 · 0 评论 -
粒子滤波(PF)与自适应粒子滤波(APF)在三维动态系统状态估计中的对比,使用Sage Husa自适应的思想|无需下载,订阅专栏后可看到完整代码
这段代码展示了粒子滤波和自适应粒子滤波在动态系统状态估计中的应用。通过对比两种滤波方法的性能,可以评估自适应滤波在动态环境下的优势,特别是在观测噪声变化时的适应能力。该代码在目标跟踪、导航等领域有广泛的应用潜力。原创 2024-12-24 07:46:49 · 576 阅读 · 0 评论 -
自适应无迹卡尔曼滤波例程与讲解,含完整代码
自己创建的MATLAB程序。后面的完整代码可以独立运行。原创 2024-02-22 13:15:08 · 530 阅读 · 0 评论 -
【逐行注释】自适应Q的AUKF|MATLAB代码|无需下载,可直接复制到MATLAB上面运行
自适应无迹卡尔曼滤波在无迹卡尔曼滤波的基础上,引入了自适应的思想。它通过动态地调整无迹点的数量和分布,以适应系统的动态变化。具体来说,它使用一种自适应的方法来根据系统的动态特性进行无迹点的选择和更新,从而提高系统的估计精度。自适应无迹卡尔曼滤波适用于非线性和非高斯的系统状态估计问题,可以广泛应用于机器人导航、目标跟踪、航天器导航等领域。它通过动态地调整无迹点的数量和分布,能够更好地适应系统的动态特性,提高估计精度,同时具有较低的计算复杂度。是我自己一个字一个字打的,如果有错别字等问题,欢迎指正。原创 2024-09-09 21:17:55 · 708 阅读 · 0 评论 -
自适应卡尔曼滤波(包括EKF、UKF、CKF等)的创新思路——该调什么、不该调什么
在自适应卡尔曼滤波中,关键参数如过程噪声和测量噪声协方差矩阵需要根据环境和需求进行调节,而状态转移矩阵和观测矩阵应保持不变以确保模型的稳定性和可靠性。通过适当的调整和算法设计,可以显著提高滤波器的性能。如有自适应滤波相关的定制需求,可联系文末的卡片。原创 2024-12-11 15:59:08 · 1740 阅读 · 0 评论 -
Sage husa下的CKF代码,基于Sage算法理论,自适应观测噪声R,与常规CKF对比
该代码实现了 CKF 和 ACKF 的比较,展示了自适应滤波在动态目标跟踪中的优势。通过动态调整观测噪声,ACKF 可以在不同的噪声环境下更好地跟踪目标,提升了跟踪精度。这种方法在自动驾驶、机器人导航和其他需要实时跟踪的应用中具有重要意义。原创 2024-12-23 14:21:40 · 374 阅读 · 0 评论 -
强跟踪UKF算法,三维非线性状态量和观测量(MATLAB代码,订阅专栏后可直接复制到MATLAB空脚本运行,无需下载)
代码最终输出更新后的状态估计,存储在 中。这些状态估计可以用于进一步分析或控制系统。滤波前后的状态量与真实值的曲线对比:误差曲线对比:误差输出:程序结构如下:完整代码如下:(复制到MATLAB空脚本即可运行)备注原创 2024-12-13 07:31:33 · 337 阅读 · 0 评论 -
输入误差不稳定时的UKF探索(基于MATLAB编程,有源代码)
当输入的状态(加速度、角速度、速度等值)误差不稳定时,通过自适应UKF的思想,设计动态变化Q的无迹卡尔曼滤波。原创 2024-05-05 15:10:47 · 265 阅读 · 0 评论