LLM - 配置 ModelScope SWIFT 测试 Qwen2-VL 视频微调(LoRA) 教程(3)

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/142912962

免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。


Introduction

SWIFT 即 Scalable lightWeight Infrastructure for FineTuning (可扩展轻量级微调基础设施),是高效、轻量级的模型微调和推理框架,支持大语言模型(LLM) 和 多模态大型模型(MLLM) 的训练、推理、评估和部署。可以将 SWIFT 框架直接应用到研究和生产环境中,实现从模型训练和评估到应用的完整工作流程。

GitHub: modelscope/ms-swift

系列教程:

### 如何在ModelScope平台部署Qwen2-VL-7B模型 #### 下载模型 为了下载`Qwen2VL-7B`多模态大模型,可利用Python脚本简化这一过程。具体而言,通过引入`modelscope`库中的`snapshot_download`函数来指定并获取所需的模型版本。 ```python from modelscope import snapshot_download model_dir = snapshot_download('Qwen/Qwen2-VL-7B-Instruct-GPTQ-Int4') ``` 另一种方式同样采用`snapshot_download`方法但从不同路径加载相同或相似配置下的模型实例[^2]: ```python from modelscope.hub.snapshot_download import snapshot_download model_dir = snapshot_download('qwen/Qwen2-VL-7B-Instruct', cache_dir='ai_models') ``` #### 准备开发环境 对于希望直接操作源码而不立即改变全局包管理状态的开发者来说,在本地克隆Swift项目仓库是一个不错的选择;这允许团队成员基于特定分支开展工作而无需立刻影响到其他依赖关系。需要注意的是关于某些外部依赖项(如PyTorch版本、Transformers库的具体提交记录等),建议跟踪官方文档或相关Issue页面获得最新指导[^3]。 ```bash git clone https://github.com/modelscope/swift.git cd swift # 可选:根据实际需求决定是否执行以下命令以安装必要的软件包 # pip install -e .[llm] # 关注此ISSUE了解更多信息: https://github.com/QwenLM/Qwen2-VL/issues/12 # 安装torch及其他辅助工具 pip install torch>=2.4 pip install git+https://github.com/huggingface/transformers@21fac7abba2a37fae86106f87fcf9974fd1e3830 pip install accelerate pyav qwen_vl_utils ``` 完成上述准备工作之后,即可按照个人应用场景进一步探索如何高效地集成和优化该预训练模型性能了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值