[用LangChain集成Marqo:用嵌入式搜索引擎提升检索速度]

引言

在现代信息检索中,响应速度和搜索精度是关键要素。Marqo作为一个强大的张量搜索引擎,通过其嵌入存储机制,能极大提升搜索速度。更令人兴奋的是,它可以轻松集成到LangChain生态系统中,支持文本和图像的多模态搜索。本文将介绍如何在LangChain中使用Marqo,并提供实用的代码示例。

主要内容

什么是Marqo?

Marqo是一款先进的张量搜索引擎,利用嵌入式存储和HNSW索引,在极短时间内处理大规模文档检索。它支持数百万级文档索引的水平扩展,并允许异步、非阻塞的数据上传和搜索。Marqo集成了来自PyTorch、Huggingface、OpenAI的机器学习模型,支持ONNX加速推断。

部署和安装

Marqo的部署非常灵活,您可以使用Docker镜像快速启动本地环境,或联系我们获取云端托管服务。要在本地运行Marqo,请访问我们的快速入门指南 # 使用API代理服务提高访问稳定性

安装Python SDK

使用以下命令安装Marqo的Python SDK:

pip install marqo

向量存储的封装

在LangChain中,Marqo的索引可以作为向量存储使用。它支持多模态索引,使得您可以在文本和图像混合的文档中进行搜索。重要的是ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值