Training language models to follow instructions with human feedback

该研究探讨了如何通过人类反馈强化学习(RLHF)微调大模型,使语言模型更好地遵循用户意图。实验表明,经过微调的InstructGPT模型在真实性和毒性方面优于GPT-3,但在某些NLP任务上性能下降。此外,InstructGPT在未见过的指令上表现出良好的泛化能力,但仍会犯简单错误。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Abstract

使语言模型变得更大并不意味着它们本身就能更好地遵循用户的意图。模型的输出结果可能存在以下问题

  • 不真实
  • 有毒
  • 对用户没有帮助

即这些模型没有和用户 “对齐”(aligned)

在给定的 Prompt 分布上,1.3B 的 InstructGPT 的输出比 175B GPT-3 的输出更好(尽管参数量相差 100 多倍)。

1 Introduction

语言建模的目标:predicting the next token on a webpage from the internet

期望的目标: follow the user’s instructions helpfully and safely (Radford et al., 2019; Brown et al., 2020; Fedus et al., 2021; Rae et al., 2021;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值