【scikit-learn入门指南】:机器学习从零开始

1. 简介

scikit-learn是一款用于数据挖掘和数据分析的简单高效的工具,基于NumPy、SciPy和Matplotlib构建。它能够进行各种机器学习任务,如分类、回归和聚类。

2. 安装scikit-learn

在开始使用scikit-learn之前,需要确保已经安装了scikit-learn库。可以使用以下命令安装:

pip install scikit-learn

3. 数据预处理

数据预处理是机器学习中的一个重要步骤。在这一部分,我们将讨论如何处理缺失值、标准化数据以及编码类别变量。

缺失值处理

在实际数据集中,经常会遇到缺失值。我们可以使用scikit-learn的SimpleImputer类来填补缺失值。

import numpy as np
from sklearn.impute import SimpleImputer

# 创建一个包含缺失值的数据集
data = np.array([[1, 2, np.nan], [3, np.nan, 6], [7, 8, 9]])

# 使用均值填补缺失值
imputer = SimpleImputer(strategy='mean')
data_imputed = imputer.fit_transform(data)

print("填补后的数据:\n", data_imputed)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

X.AI666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值