后缀的最长公共前缀(lcp(x,y))

分析

这是height数组的最基本性质之一。具体的可以参看罗穗骞的论文。后缀i和后缀j的最长公共前缀的长度为它们在sa数组中所在排位之间的height值中的最小值。这个描述可能有点乱,正规的说,令x=rank[i],y=rank[j],x < y,那么lcp(i,j)=min(height[x+1],height[x+2]…height[y])。lcp(i,i)=n-sa[i]。解决这个问题,用RMQ的ST算法即可(我只会这个,或者用最近公共祖先那个转化的做法)。

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 1e5+5;

char s[maxn];
int sa[maxn],t[maxn],t2[maxn],c[maxn];
int Rank[maxn], height[maxn], dp[maxn][20];

void build_sa(int n,int m){
    int i,*x = t, *y = t2;  //引用指针只是为了后面好交换
    for(i = 0; i < m; i++) c[i] = 0;
    for(i = 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值