分析
这是height数组的最基本性质之一。具体的可以参看罗穗骞的论文。后缀i和后缀j的最长公共前缀的长度为它们在sa数组中所在排位之间的height值中的最小值。这个描述可能有点乱,正规的说,令x=rank[i],y=rank[j],x < y,那么lcp(i,j)=min(height[x+1],height[x+2]…height[y])。lcp(i,i)=n-sa[i]。解决这个问题,用RMQ的ST算法即可(我只会这个,或者用最近公共祖先那个转化的做法)。
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 1e5+5;
char s[maxn];
int sa[maxn],t[maxn],t2[maxn],c[maxn];
int Rank[maxn], height[maxn], dp[maxn][20];
void build_sa(int n,int m){
int i,*x = t, *y = t2; //引用指针只是为了后面好交换
for(i = 0; i < m; i++) c[i] = 0;
for(i =