算法每一题,成长每一天~
C0E8 最大报酬
真题链接:【持续更新】2024华为 OD 机试E卷 机考真题库清单(全真题库)
思路
典型的《0-1背包问题》。
《背包问题》
每个物品有两个属性(加上物品自己,一共三个变量)。
如何选择物品,让一个属性的累计值在资源限制范围内,使得另一个属性的累计值最大?
- 变种:
0-1背包:每个物品只能选择一个或不选
多重背包:每个物品可选次数有上限
完全背包:每个物品可以无限次选择
使用《动态规划》算法,常见思路如下:
Java
import java.util.Scanner;
public class C0E8 {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int T = in.nextInt(); // 总时长
int n = in.nextInt(); // 工作个数
int[] ts = new int[n]; // 每个工作耗时
int[] ws = new int[n]; // 每个工作报酬
for (int i = 0; i < n; i++) {
ts[i] = in.nextInt();
ws[i] = in.nextInt();
}
// 1.状态定义:dp[i][j] 表示选前 i 个工作,且总时长为 j 时,最大收益值
int[][] dp = new int[n + 1][T + 1];
// 2.边界
for (int i = 0; i <= n; i++) {
dp[i][0] = 0;
}
for (int i = 0; i <= T; i++) {
dp[0][i] = 0;
}
// 3.状态转移方程
for (int i = 1; i <= n; i++) { // 选择前 1~n 个工作
int time = ts[i - 1]; // 第 i 个工作的时长,在这个数组里对应下标为 i-1
int wage = ws[i - 1]; // 第 i 个工作的报酬
for (int j = 1; j <= T; j++) { // 遍历每个所能达到的时长 1~T
// 判断第 i 个工作的时长,是否超过 总时长j
if (time > j) {
// 如果超过,则不能选择第 i 个工作
// 获得的报酬 = 选择前 i-1个工作且总时长为 j 的最大报酬
dp[i][j] = dp[i - 1][j];
} else {
// 不超过,则可选,可不选
int noSelect = dp[i - 1][j]; // 不选时的收益(同上面)
int selected = dp[i - 1][j - time] + wage; // 选择时的收益
// 只有上面两种情况,取收益更大的即可
dp[i][j] = Math.max(noSelect, selected);
}
}
}
// 输出 n , T 时的最大收益
System.out.println(dp[n][T]);
}
}
总结
1、掌握动态规划算法的思考思路,是解决问题的关键。
- 状态定义
- 边界定义
- 状态转移方程
算法要多练多练多练!!