MFCC的python实现
1.对音频信号进行分割为帧
#coding=utf-8
#对音频信号处理程序
#张泽旺,2015-12-12
# 本程序主要有四个函数,它们分别是:
# audio2frame:将音频转换成帧矩阵
# deframesignal:对每一帧做一个消除关联的变换
# spectrum_magnitude:计算每一帧傅立叶变换以后的幅度
# spectrum_power:计算每一帧傅立叶变换以后的功率谱
# log_spectrum_power:计算每一帧傅立叶变换以后的对数功率谱
# pre_emphasis:对原始信号进行预加重处理
import numpy
import math
def audio2frame(signal,frame_length,frame_step,winfunc=lambda x:numpy.ones((x,))):
'''将音频信号转化为帧。
参数含义:
signal:原始音频型号
frame_length:每一帧的长度(这里指采样点的长度,即采样频率乘以时间间隔)
frame_step:相邻帧的间隔(同上定义)
winfunc:lambda函数,用于生成一个向量
'''
signal_length=len(signal) #信号总长度
frame_length=int(round(frame_length)) #以帧帧时间长度
frame_step=int(round(frame_step)) #相邻帧之间的步长
if signal_length<=frame_length: #若信号长度小于一个帧的长度,则帧数定义为1
frames_num=1
else: #否则,计算帧的总长度
frames_num=1+int(math.ceil((1.0*signal_length-frame_length)/frame_step))
pad_length=int((frames_num-1)*frame_step+frame_length) #所有帧加起来总的铺平后的长度
zeros=numpy.zeros((pad_length-signal_length,)) #不够的长度使用0填补,类似于FFT中的扩充数组操作
pad_signal=numpy.concatenate((signal,zeros)) #填补后的信号记为pad_signal
indices=numpy.tile(numpy.arange(0,frame_length),(frames_num,1))+numpy.tile(numpy.arange(0,frames_num*frame_step,frame_step),(frame_length,1)).T #相当于对所有帧的时间点进行抽取,得到frames_num*frame_length长度的矩阵
indices=numpy.array(indices,dtype=numpy.int32) #将indices转化为矩阵
frames=pad_signal[indices] #得到帧信号
win=numpy.tile(winfunc(frame_length),(frames_num,1)) #window窗函数,这里默认取1
return frames*win #返回帧信号矩阵
def deframesignal(frames,signal_length,frame_length,frame_step,winfunc=lambda x:numpy.ones((x,))):
'''定义函数对原信号的每一帧进行变换,应该是为了消除关联性
参数定义:
frames:audio2frame函数返回的帧矩阵
signal_length:信号长度
frame_length:帧长度
frame_step:帧间隔
winfunc:对每一帧加window函数进行分析,默认此处不加window
'''
#对参数进行取整操作
signal_length=round(signal_length) #信号的长度
frame_length=round(frame_length) #帧的长度
frames_num=numpy.shape(frames)[0] #帧的总数
assert numpy.shape(frames)[1]==frame_length,'"frames"矩阵大小不正确,它的列数应该等于一帧长度' #判断frames维度
indices=numpy.tile(numpy.arange(0,frame_length),(frames_num,1))+numpy.tile(numpy.arange(0,frames_num*frame_step,frame_step),(frame