父文档检索器引和RAG的context precision性能指标

父文档检索器引和context precision性能指标

父文档检索器是一种搜索工具,用来从一大堆文档中找出跟你的问题最相关的答案。它的特别之处在于,它会先把文档分成小块(子片段),然后找到最相关的小块,再返回这些小块所属的完整大文档(父文档)。这样既能精准找到相关内容,又能提供完整的背景信息.

在使用父文档检索器时候,在查看context precision时会出现结果很低的情况,这并不能说是父文档检索器的性能不好,这其实是父文档检索器这个技术的本质导致的。

如上是context precision的计算公式:

  • n:检索到的文档总数。
  • k:文档在检索结果中的排名位置(从1开始)。
  • rk:第k个文档的相关性评分(例如,1表示相关,0表示不相关)。
  • Number of Relevant Nodes Up to Position:截至第k个位置的相关文档数量。
  • Number of Relevant Nodes:所有相关文档的总数。

这个公式通过对排名靠前的文档赋予更高的权重(因为分母k较小),强调检索系统将相关文档排在前面的重要性。context precision是一个0到1之间的数,1表示最好的结果。
在父文档检索器场景下,解释可能会特别指出父文档是否提供了足够

### 使用 RAGAS 指标评估生成检索模型 #### 评估指标定义 为了全面评价基于检索增强生成 (RAG) 的应用,可以采用多个维度的量化指标来衡量其性能。以下是几个核心指标及其含义: 1. **Faithfulness(忠诚度)** - 这一指标用于测量生成的回答是否忠实地反映了检索到的内容[^2]。如果生成的答案偏离了原始上下文中的事实,则该指标得分会较低。 2. **Answer Relevancy(回答相关性)** - 此项考察的是最终生成的结果与用户提问之间的关联程度。即使检索部分表现良好,但如果生成器未能提供切题的回答,这一分数也会受到影响[^1]。 3. **Context Precision(上下文精确率)** - 它表示被成功召回并实际应用于生成过程中的信息比例有多高。换句话说,就是有多少百分比的检索结果确实有助于构建有效回复。 4. **Context Recall(上下文召回率)** - 反映系统能否找到所有对于解答当前查询至关重要的资料片段。较高的数值意味着几乎没有遗漏任何重要数据源。 这些标准共同构成了一个完整的框架,能够帮助开发者深入了解各自系统的强弱点所在,并据此做出改进决策。 #### ragas 库功能概述及安装指南 ##### 功能描述 `ragas` 是专为支持上述提到的各种质量评测而设计的一个开源工具包。它不仅提供了实现前述各项评分机制所需的算法逻辑,还简化了整个测试流程的操作难度,使得研究人员技术人员更容易对其开发的产品进行科学严谨的质量把控。 ##### 安装步骤 要开始使用 `ragas` ,可以通过 Python 的 pip 工具轻松完成环境配置工作: ```bash pip install ragas ``` 一旦安装完毕之后,就可以按照官方文档调用相应 API 接口来进行具体项目的分析作业了。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

质问

开心就好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值