
Elasticsearch
文章平均质量分 86
自燃人~
向往平淡,却不甘于平凡~
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
ES倒排索引的原理
倒排索引:全文搜索的加速器 倒排索引是一种通过“关键词→文档ID列表”映射优化搜索的数据结构,核心思想是将文档内容分词后建立反向关联。与数据库正排索引(逐行扫描)不同,倒排索引直接定位关键词所在文档,无需遍历数据。例如,搜索“喜欢”时,ES通过倒排表快速返回文档[1,3]。 Lucene底层实现中,每个关键词(Term)关联一个倒排链表(PostingsList),记录文档ID、词频、位置等信息,支持短语搜索、高亮等功能。实际应用中,text类型字段默认构建倒排索引,而聚合场景使用doc_values。原创 2025-06-21 15:45:23 · 587 阅读 · 0 评论 -
如何将关键字段数据灌输到 Elasticsearch?(实战+对比详解)
摘要:本文将各种主流数据同步方案进行对比分析,重点介绍了Canal+Kafka+自研消费者、Maxwell+Kafka+Logstash、FlinkCDC+FlinkSinktoES、DTS云同步服务四种方案的特点。其中Canal+Kafka方案灵活可控但运维复杂,适合大中型项目;Maxwell+Kafka方案部署简单,适合中小项目;FlinkCDC方案适合大数据实时场景;DTS云服务运维成本低但扩展性差。文章还提供了字段处理、幂等控制等实用技巧,并针对不同业务场景给出方案选择建议。原创 2025-06-21 10:20:38 · 848 阅读 · 0 评论 -
Elasticsearch 节点部署情况与优化
摘要:Elasticsearch节点类型包括Master(必需)、Data(必需)、Ingest(可选)、Coordinating(可选)和MachineLearning(可选)。生产环境建议部署3个专职Master节点、多个Data节点和独立Coordinating节点,并合理配置资源(如堆内存不超过32GB)。优化策略包括:Master节点专责管理、Data节点SSD配置、合理分配shard、JVM调优、批量写入和查询优化等。同时需监控集群指标、GC情况和慢查询,确保稳定运行。原创 2025-06-21 11:27:57 · 689 阅读 · 0 评论 -
日志类系统与交易类系统(订单/商品搜索)两种典型场景整理的 Elasticsearch 生产部署与实战优化方案
摘要:本文对比分析了Elasticsearch在日志类系统(ELK)和交易类系统的部署优化策略。日志类系统建议3Master+多Data节点架构,采用时间滚动索引、ILM生命周期管理;交易类系统需SSD+高内存配置,重点优化实时搜索、幂等写入和深度分页。核心优化包括shard数量控制、mapping规范、批量写入和查询性能提升,并强调两种场景在索引策略、数据特征上的差异。实际应用需结合监控体系保障稳定性,通过合理架构设计满足不同业务场景的性能需求。原创 2025-06-21 11:30:29 · 957 阅读 · 0 评论 -
Elasticsearch 是什么时候保存数据的?
Elasticsearch写入机制采用WAL(预写日志)模式:数据先写入内存缓冲区和translog(事务日志),默认每秒refresh一次生成可搜索的segment文件,但仅flush操作(手动或自动触发)才会持久化到磁盘。关键参数包括refresh_interval(1秒)和translog.flush_threshold_size(512MB)。为确保数据不丢失,需配置合理的flush策略,重要数据可强制refresh,并设置durability:request保证translog同步写盘。原创 2025-06-21 14:30:00 · 363 阅读 · 0 评论 -
Elasticsearch 的原理
Elasticsearch是基于Lucene的分布式搜索引擎,其核心原理是倒排索引机制,通过建立"关键词-文档ID"映射实现高效全文搜索。采用分布式架构,数据分片存储,支持多副本保证高可用。写入时先缓存再持久化,查询时多分片并行处理。其优势在于:倒排索引快速定位、分布式并行查询、分词优化、缓存机制等,使其特别适合处理高并发搜索和日志分析场景。ES还支持结构化搜索、聚合分析等高级功能,通过合理配置可实现读写分离。原创 2025-06-21 15:07:48 · 558 阅读 · 0 评论