
熬之滴水穿石
文章平均质量分 91
嘿!我也是在 IT 技术海洋里不断探索的 “老水手”。这个专栏,咱们抛开 “说教”,像并肩的伙伴一样, 一同深入人工智能、大数据、云计算等热门技术领域,发现新技术的魅力,攻克难题,共同成长!
chilavert318
这是我IT职场的成长记录
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
老码农和你一起学AI:Python系列-Seaborn的主题、调色与上下文控制
本文介绍了Python可视化库Seaborn的三个核心功能:主题设置(sns.set_theme())用于统一图表风格,调色板(sns.color_palette())提供科学的色彩方案选择,上下文控制(sns.plotting_context())适配不同展示场景。通过理论讲解和实例演示,展示了如何单独或组合使用这些功能来创建专业级的数据可视化图表,帮助数据分析师根据数据类型和输出需求优化图表呈现效果。原创 2025-07-30 07:47:40 · 834 阅读 · 0 评论 -
技术演进中的开发沉思-50 DELPHI VCL系列: COMAdmin 类
Delphi的COMAdmin类别(TCOMAdminCatalog、CoCOMAdminCatalogCollection、TCOMAdminCatalogObject)简化了Windows COM+组件管理。TCOMAdminCatalog作为控制中心处理连接,CoCOMAdminCatalogCollection组织组件集合,TCOMAdminCatalogObject管理具体属性。三者协同工作,使远程部署和配置变得高效,将复杂的COM+管理转化为直观操作。这种设计体现了Delphi"原创 2025-07-30 07:38:40 · 924 阅读 · 0 评论 -
老码农和你一起学AI:Python系列-Seaborn 核心技巧
本文深入解析Seaborn统计可视化工具,重点介绍其在数据探索中的核心应用。通过分布类(displot/kdeplot/ecdfplot)、关系类(relplot/pairplot)和分类类(catplot)三大场景,展现Seaborn如何将统计计算与可视化深度融合。文章强调统计可视化与普通可视化的本质区别在于"提炼数据规律"而非"还原数据本身",并通过电商用户数据分析等案例,演示如何快速获得关键业务洞察。最后总结不同分析目标对应的最佳可视化工具选择逻辑,指出可视化应原创 2025-07-29 08:08:24 · 690 阅读 · 0 评论 -
技术演进中的开发沉思-49 DELPHI VCL系列:TCanvasl
本文介绍了Delphi VCL中Canvas相关类的设计理念和应用场景。TCanvas作为通用画板适用于任意载体绘图,而TControlCanvas则专为控件绑定设计,能自动跟随控件移动并感知状态变化。文章通过具体案例(如按钮消息提示、可点击设备图标)展示了如何将Canvas与TWinControl类结合,实现动态交互界面。这些封装类隐藏了底层绘图复杂度,让开发者专注于业务逻辑,体现了Delphi"开发者友好"的设计哲学。作者认为这种将技术细节封装、简化开发流程的理念,是值得现代程序员借原创 2025-07-29 07:55:20 · 622 阅读 · 0 评论 -
老码农和你一起学AI:Python系列-Matplotlib 核心架构
介绍了Matplotlib的核心架构与基本工作流程。关键点包括:1) Figure与Axes的关系,Figure是画布容器,Axes是具体绘图区域;2) 两种绘图模式对比,plt.subplots()适合快速绘图,OOP模式适合复杂布局;3) 图表保存的关键参数,如dpi分辨率、bbox_inches防裁剪等;4) 通过rcParams实现全局风格设置,提高绘图效率。掌握这些基础架构知识,是从简单绘图进阶到专业可视化的重要基础。原创 2025-07-28 07:48:22 · 887 阅读 · 0 评论 -
技术演进中的开发沉思-48 DELPHI VCL系列:TWinControl
TWinControl是Delphi VCL框架中封装Windows窗口控件的核心类,其精妙设计体现在三方面:首先,它通过类映射机制将VCL控件转换为Windows窗口类,重构了原生控件行为模式;其次,其控件树构建和布局算法实现了高效的父子控件管理,通过BeginUpdate/EndUpdate优化批量操作性能;最后,消息处理机制采用"消息冒泡"和优先级调度策略,支持灵活的事件拦截与分发。此外,双缓冲重绘和懒加载策略有效解决了界原创 2025-07-28 07:35:13 · 721 阅读 · 0 评论 -
老码农和你一起学AI:Python系列-Pandas的生产环境部署
本文探讨了如何将Pandas数据处理从实验环境迁移到生产系统,提出了三个关键工程化方案:1)使用Docker容器化技术确保环境一致性,解决依赖版本差异问题;2)采用Pipeline模式将数据处理流程模块化,提高代码复用性和可维护性;3)通过自动化测试保障数据质量,使用pytest验证每个处理环节的正确性。文章指出,这些方法本质上是通过容器化、流程化和测试化来消除数据处理中的不确定性,使Pandas既能保持分析灵活性,又能满足生产系统的可靠性要求。原创 2025-07-27 09:21:05 · 765 阅读 · 0 评论 -
技术演进中的开发沉思-47 DELPHI VCL系列:TControl的设计
TControl是Delphi VCL框架中所有可视化控件的基类,如同建筑的地基支撑着整个控件体系。它提供五大核心服务:1)基础资源管理(位置、大小等属性);2)鼠标事件处理;3)Windows消息转换;4)控件重绘优化;5)可继承的抽象结构。文章通过开发实例(如解决界面闪烁、鼠标响应问题)展示了TControl的核心价值——作为"技术地基"的稳定性和扩展性。作者强调,就像程序员需要扎实的基础一样,良好的框架设计应该像TControl这样,将基础功能与扩展能力完美结合。原创 2025-07-27 08:54:23 · 955 阅读 · 0 评论 -
老码农和你一起学AI:Python系列-Pandas的编译加速
本文介绍了Pandas中两个性能优化工具numba和eval()的使用技巧。numba通过@njit装饰器将Python函数编译为机器码,特别适合加速自定义函数的循环运算,可使百万行数据的计算速度提升万倍。eval()则擅长优化多列运算表达式,通过减少临时变量创建,能显著提升大数据量下的计算效率。文章通过生动的汽车和道路比喻,对比了两者的适用场景:numba适用于复杂自定义函数,而eval()更适合简洁的列运算表达式。作者建议根据实际场景选择工具,并通过性能测试(%timeit)验证优化效果,强调数据处理应原创 2025-07-26 09:08:08 · 1038 阅读 · 0 评论 -
技术演进中的开发沉思-46 DELPHI VCL系列:TComponent 的设计智慧
摘要:本文回顾了Delphi的VCL框架设计哲学,重点分析了TComponent组件的核心特性。作者通过亲身经历对比了VCL与其他开发框架的差异,指出VCL"所见即所得"的设计理念和"预制件"架构的前瞻性。TComponent作为所有组件的基类,实现了四大创新:组件容器化、自动通知机制、可视化/非可视化统一管理,以及与IDE的深度集成。这些设计使开发者能像搭积木一样快速构建应用,将复杂性隐藏在框架内部,提供简单直观的开发体验。文章认为VCL最宝贵的不是技术本身,而是其原创 2025-07-26 08:56:34 · 691 阅读 · 0 评论 -
老码农和你一起学AI:Python系列-Pandas 优化策略
本文总结了Pandas数据处理中的常见性能优化策略。基础操作应避免inplace=True,合理使用深浅拷贝,优先使用索引查询;规避逐行迭代和过度深拷贝等反模式;对于复杂计算可借助numba编译加速或pd.eval()批量执行。关键在于理解底层原理,让运算尽量在C语言层完成,同时平衡内存与速度需求。优化前应先定位性能瓶颈,而非盲目修改代码。掌握这些技巧可显著提升大数据处理效率。原创 2025-07-25 08:01:35 · 660 阅读 · 0 评论 -
技术演进中的开发沉思-45 DELPHI VCL系列:6种方法
Delphi开发中的VCL框架与OOP设计思想 本文通过对比VC++和Delphi的开发体验,阐述了Delphi中可视化组件库(VCL)框架和面向对象编程(OOP)的设计精髓。文章详细解析了VCL框架的6种核心设计方法:抽象类别法、PlaceHolder方法、逐渐增加法、三明治手法、覆盖父代实作法以及BootStrap设计法。这些方法体现了Delphi通过组件化设计和继承机制,在保持系统稳定性的同时提供了高度灵活性。作者结合自身开发经验,生动地将技术概念类比为日常生活中的物品(如家具、蛋糕、三明治等),深入原创 2025-07-25 07:43:51 · 1040 阅读 · 0 评论 -
老码农和你一起学AI:Python系列-Pandas内存压缩
本文介绍了三种高效的数据内存压缩技术:1. 类型降级法:将大容量数值类型(如int64)转换为合适的小类型(如int16),在保证数据范围的前提下可减少75%内存占用。2. Category类型:对重复字符串进行编号存储,可降低90%内存使用,适用于高重复率文本字段。3. 内存分析工具:使用df.info()进行内存体检,精准定位压缩重点。这些方法不仅是技术手段,更能促进对数据特征的深入理解。在数据爆炸时代,合理的内存压缩已成为提升系统性能、降低成本的关键技能。原创 2025-07-24 08:08:34 · 1001 阅读 · 0 评论 -
技术演进中的开发沉思-44 DELPHI VCL系列:VCL
现在用 VS Code 写前端时,拖个组件到页面的瞬间,总会想起第一次用 Delphi 拖按钮的感觉。VCL 的伟大,不在于它多先进,而在于它第一次说清了 “组件该怎么设计”:要能轻松创建,要能互相识别,要能安全回收,要能方便扩展。这些道理到今天还在生效 ——React 的组件生命周期,不就是 “建立 - 使用 - 释放” 的现代版吗?Vue 的虚拟 DOM,不就是 “高效找方法” 的 VMT 思路吗?技术会老,但好的设计永远年轻。就像当年用 VCL 写的程序,有些至今还在工厂里跑;就像那些 “创建要初始化原创 2025-07-24 07:59:44 · 1261 阅读 · 0 评论 -
老码农和你一起学AI:Python系列-Pandas 性能分析工具
本文介绍了pandas性能分析的常用工具及其应用场景,包括%timeit、line_profiler和memory_profiler。%timeit作为IPython内置命令,适合快速测量代码整体运行时间;line_profiler能逐行分析函数耗时,精准定位性能瓶颈;memory_profiler则专注于内存使用分析,帮助优化内存密集型操作。文章通过实际案例演示了如何综合运用这些工具,先通过%timeit定位整体性能问题,再用line_profiler分析耗时行,最后用memory_profiler优化内原创 2025-07-23 07:37:21 · 1074 阅读 · 0 评论 -
技术演进中的开发沉思-43 DELPHI VCL系列:Framework的历史
本文回顾了Windows开发框架的演变历程。作者以木匠工具为喻,从早期手动调用API(如凿子手工制作)到OWL/MFC等初代框架(电动工具),再到Delphi的VCL(智能机床)实现可视化拖拽开发,最后到.NET的全能平台。重点对比了VCL和MFC的差异:VCL封装细节实现快速开发,MFC则提供更底层控制。文章指出技术发展的本质是不断将复杂工作封装,让开发者专注业务逻辑,并认为VCL首次使界面开发变得轻松愉快。这种"框架处理复杂,开发者专注简单"的理念正是优秀技术的共通之处。原创 2025-07-23 07:36:44 · 885 阅读 · 0 评论 -
老码农和你一起学AI:Python系列-Pandas 与 Dask 集成
Pandas是单机数据分析的标准工具,但在处理TB级数据时面临内存限制。Dask通过兼容Pandas API(80%核心操作)实现了分布式计算扩展,采用延迟计算机制优化资源利用。在5TB电商数据分析案例中,Dask集群12分钟完成计算(Pandas因内存不足失败),通过分片读取、分布式聚合等操作实现高效处理。关键优势在于代码迁移成本低,但需注意Dask不适用于小数据量、实时性要求高的场景。优化手段包括转换数据格式为Parquet、预分区等。原创 2025-07-22 07:57:10 · 1096 阅读 · 0 评论 -
技术演进中的开发沉思-42 MFC系列:Components 与 ActiveX Controls
从MFC到DELPHI的演进 本文回顾了VC++开发中利用ComponentGallery和各类组件的实践经验。重点介绍了MFC框架下的Splashscreen等实用组件,以及ActiveX控件的跨平台特性。文章通过具体案例展示了组件化开发如何提升效率,同时指出MFC组件在扩展性和灵活性上的局限。最后引出DELPHI的VCL组件库作为对比,展现了组件化思想从"手工组装"到"可视化开发"的演进过程。这些历史经验揭示了软件开发中"抽象原创 2025-07-22 07:45:49 · 1044 阅读 · 0 评论 -
老码农和你一起学AI:Python系列-Pandas 并行计算
原生 Pandas 因单线程特性,处理大数据时效率低下。并行计算可利用多核 CPU 提升效率,适用于数据量大、计算复杂的场景。swifter 能自动判断并并行化 apply 操作,借助 dask 分片处理,加速效果明显,且几乎无需改代码,但对简单函数提升有限。modin.pandas 可替代原生 Pandas,通过数据分片和任务并行,加速读取、groupby 等全流程操作,API 一致,学习成本低,适合大规模数据。选择上,apply 瓶颈选 swifter,全流程加速选 modin,二者也可结合原创 2025-07-21 07:39:28 · 866 阅读 · 0 评论 -
技术演进中的开发沉思-41 MFC系列:定制 AppWizard
文章摘要:本文介绍了MFC开发中CustomAppWizard工具的使用与定制过程。作者通过实际项目案例,详细讲解了如何将重复的项目配置步骤固化为团队专属模板,包括基础模板选择、功能选项配置等。深入剖析了AppWizard的工作原理,包括配置对话框和.awx代码生成脚本的配合机制。并以添加"数据加密"功能为例,演示了如何修改模板代码和配置界面。文章展现了早期程序员对代码复用的思考,强调"让工具适应人"的理念是技术演进中不变的真理。原创 2025-07-21 07:25:36 · 775 阅读 · 0 评论 -
老码农和你一起学AI:Python系列-Pandas大数据处理
本文介绍了使用Pandas进行大数据分块处理(Out-of-Core)的技术方法。当处理GB级以上数据时,直接加载会导致内存不足,通过read_csv的chunksize参数将数据拆分为小块处理,每次只加载部分数据到内存中。文章详细说明了分块读取、聚合计算的具体实现步骤,并提供了两种并行化方案:使用multiprocessing实现基础并行,以及利用Dask库实现类Pandas的自动并行处理。同时强调了分块大小设置、数据类型一致性等注意事项,帮助开发者在有限内存条件下高效处理超大规模数据集。这项技术无需升级原创 2025-07-20 11:13:39 · 977 阅读 · 0 评论 -
技术演进中的开发沉思-40 MFC系列:多线程协作
以生活化比喻讲述 MFC 多线程设计。进程如工厂,线程似工人,共享资源又分工干活。MFC 线程分 Worker Threads(后台干活)和 UI Threads(处理界面)。通过 CWinThread 类及 AfxBeginThread 函数创建线程,需注意设自动释放避免内存问题。线程结束宜用标志位 “温柔通知”,同步可用临界区等 “工具锁” 防数据错乱。作者结合经历分享,体现多线程协作理念,其原理对后续编程仍有启发。原创 2025-07-20 10:15:43 · 975 阅读 · 0 评论 -
老码农和你一起学AI:Python系列-Pandas内存压缩技术
本文介绍了Pandas内存压缩技术,通过类型降级和分类处理优化数据存储效率。针对数值型数据,建议使用刚好能容纳数据范围的最小类型(如int8替代int64);对于重复率高的字符串,推荐转换为category类型以节省内存。示例显示,这些方法能将10万行数据的内存占用从26.6MB降至2.1MB,压缩率超90%。文章还提供了判断适用场景的方法,并建议结合浮点类型优化、分块加载和二进制格式存储等扩展思路,在不增加硬件成本的情况下显著提升数据处理性能。原创 2025-07-19 08:53:06 · 743 阅读 · 0 评论 -
技术演进中的开发沉思-39 MFC系列:多重文件和多重视图
MFC框架中的多文档与多视图设计理念体现了技术服务于场景的核心思想。文章通过SDI(单文档)与MDI(多文档)的对比,以及多重视图、窗口拆分等功能的实现,展示了如何将现实办公场景映射到软件开发中。SDI适合专注单一任务,MDI支持多文档并行处理;多重视图实现同一数据的不同展现形式;窗口拆分则提供了灵活的界面布局。这些20年前的设计理念至今仍在现代开发框架中延续,反映了技术演变的本质始终是优化用户体验。文章以生动的办公场景类比,揭示了MFC框架背后"让数字操作如同实体办公"的设计哲学。原创 2025-07-19 08:37:39 · 992 阅读 · 0 评论 -
老码农和你一起学AI:Python系列-Pandas 高性能数据操作
内容主要围绕 Pandas 高性能数据操作展开。在数据修改方面,用.loc 直接定位修改更可靠,能避免链式赋值导致的无效修改和内存浪费。聚合与关联时,agg 在无需保留原数据长度时内存效率更高,关联数据用 agg 加 map 比 transform 更快。透视表使用需看场景,计数用 crosstab,复杂聚合用 pivot_table。总之,Pandas 高性能操作的关键在于理解工具设计逻辑和适用场景,明确操作需求就能提升效率。原创 2025-07-18 07:48:48 · 1134 阅读 · 0 评论 -
技术演进中的开发沉思-38 MFC系列:关于打印
回顾了MFC框架下打印开发的技术历程,通过实例分析揭示了打印机制的核心原理。文章首先剖析了设备上下文(DC)机制如何实现屏幕与打印机的坐标映射问题,通过OnPrepareDC函数解决打印比例失调的典型问题。继而阐述了MFC默认打印机制的优缺点,演示了如何通过重写OnPreparePrinting实现智能分页。文中以Scribble程序为例,详细讲解了打印设置、坐标转换和分页算法三大增强功能的具体实现。最后探讨了打印预览功能的重要意义,指出MFC打印机制所体现的设备原创 2025-07-18 07:34:47 · 1144 阅读 · 0 评论 -
老码农和你一起学AI:Python系列-Pandas 向量化操作
Pandas向量化操作比循环快2000倍!本文通过10万行数据对比测试,展示Pandas中如何用向量化替代循环处理数据:1)直接列运算比循环快2000倍;2)np.where()处理条件判断比循环快800倍;3)apply按列操作比按行快5-10倍;4)groupby实现分组聚合比循环高效。核心技巧是避免逐行操作,直接对整列进行NumPy数组运算,利用底层C语言优化提升性能。实践证明,培养"列级操作"思维能显著提升数据处理效率。原创 2025-07-17 07:45:00 · 1151 阅读 · 0 评论 -
技术演进中的开发沉思-37 MFC系列: View 功能
本文分享了MFC编程中优化View交互的核心技巧:1)多Views协作通过UpdateAllViews和OnUpdate实现数据同步更新;2)利用hint参数进行局部重绘以提高效率;3)使用CScrollView处理大尺寸内容显示;4)通过Splitter实现窗口分屏展示不同内容。这些技术虽基础,却体现了程序员对用户体验的细致考量——让信息的呈现更高效、交互更自然。如同工匠工具般朴实无华,却能打造出流畅顺手的界面体验。原创 2025-07-17 08:00:00 · 835 阅读 · 0 评论 -
老码农和你一起学AI:Python系列-Pandas的 I/O 高效操作
使用Pandas优化数据I/O效率的实用技巧。通过调整read_csv()的usecols、dtype和chunksize参数,可大幅提升大数据读取效率,如只读取必要列、压缩数据类型和分批处理。文章对比了CSV、Parquet和Feather三种存储格式的特点:CSV通用但低效,Parquet适合大型数据分析,Feather则侧重快速读写。最后介绍了数据库写入时的分批处理策略,建议通过chunksize参数分批次写入,并指定字段类型以避免转换错误。这些优化技巧如同搬家时合理规划,能显著提升数据处理原创 2025-07-16 08:05:27 · 897 阅读 · 0 评论 -
技术演进中的开发沉思-36 MFC系列: 对话框
本文以MFC对话框开发为主题,通过生动的比喻详细讲解了对话框编辑器的可视化设计功能、消息处理机制、数据交换与验证(DDX/DDV)的实现原理,以及两种调用方式(DoModal和Create)的区别与适用场景。文章特别强调了ClassWizard工具在简化开发流程中的重要作用,它能自动生成对话框类框架、消息映射和变量绑定代码,大幅提升开发效率。作者结合自身开发经验,指出MFC对话框设计理念对现代前端框架的影响,认为其将复杂交互逻辑封装、专注于用户体验的思想至今仍有借鉴价值。全文通过"会客室"原创 2025-07-16 07:45:34 · 970 阅读 · 0 评论 -
老码农和你一起学AI:Python系列-Pandas 数据结构
本文围绕 Pandas 核心数据结构展开深入分析,重点阐述了三个方面:内存布局上,Series由数据与索引数组构成,DataFrame是共享索引的多列Series集合,列存储优先且存在内存浪费可能;索引机制作为高效 “目录”,多种类型适配不同场景,能加速查询及各类数据操作;数据类型优化通过选择合适类型,可大幅减少内存占用。理解这些底层逻辑,有助于提升 Pandas 代码效率与稳健性,应对不同规模数据处理。原创 2025-07-15 08:03:42 · 1114 阅读 · 0 评论 -
技术演进中的开发沉思-35 MFC系列:消息映射与命令
摘要:本文深入剖析了Windows编程中MFC框架的消息映射与命令传递机制,将其形象比喻为城市通讯系统。文章从消息分类(用户输入、系统、命令消息)切入,阐释了CCmdTarget类作为消息处理"总机"的核心作用,并详细解析了以宏和结构构建的消息映射网形成过程。通过Scribble程序实例,展示了UI对象状态如何通过消息机制实时变化。作者结合开发经验,揭示了这一机制在各类技术框架中的延续性,体现了人机交互设计的底层逻辑智慧。全文以生动的类比和代码示例,系统性地呈现了MFC消息处理机制的技术原创 2025-07-15 07:36:59 · 894 阅读 · 0 评论 -
技术演进中的开发沉思-34 MFC系列:Document-View 架构
MFC的Document-View架构是一种职责分离的设计模式,将数据管理(Document)与界面展示(View)解耦。Document负责维护数据完整性,View专注于呈现和交互,CDocTemplate协调二者关系。以Scribble绘图程序为例,Document存储线条数据,View负责绘制,Serialize机制实现数据持久化。该架构通过宏机制实现动态创建和序列化功能,体现了模块化设计思想。虽然技术已过时,但其分离关注点的思想仍具参考价值,是早期设计模式的典范。原创 2025-07-14 07:42:30 · 779 阅读 · 0 评论 -
老码农和你一起学AI:Python系列- NumPy 性能优化
本文深入剖析NumPy性能优化的关键策略,从向量化运算、数据类型选择、内存布局优化等维度提升计算效率,探讨与深度学习框架的无缝衔接方法,并指出常见陷阱如视图/副本混淆、广播规则误用等。重点强调:通过向量化替代循环、合理选择float32/float64、利用内存连续性和out参数可显著加速;与PyTorch/TensorFlow转换时需注意内存共享特性;正确理解axis参数和随机种子设置对结果复现至关重要。掌握这些技巧,能在科学计算中实现性能与可维护性的平衡。原创 2025-07-14 07:40:32 · 844 阅读 · 0 评论 -
老码农和你一起学AI:Python系列- NumPy 四大核心功能
本文介绍了NumPy的四个核心功能:1)线性代数运算,包括矩阵乘法、向量运算和高级分解方法;2)随机数生成,涵盖多种概率分布和随机种子的重要性;3)高效函数应用,如np.where()和np.apply_along_axis();4)数组拼接与分割操作。这些功能构成了数据科学和机器学习的基础工具,强调向量化操作、实验可复现性和数据处理技巧。通过代码示例展示了如何在实际应用中高效使用这些功能。原创 2025-07-13 10:27:31 · 966 阅读 · 0 评论 -
技术演进中的开发沉思-33 MFC系列:MFC 骨架
本文回顾了2000年代初使用VC++6.0和MFC框架进行Windows开发的经历。作者将MFC比作"四合院的布局",通过Document/View结构、消息映射机制和文档模板等核心设计,展现了这一经典框架的独特魅力。文章以Scribble绘图程序为例,详细解析了MFC的消息处理机制和类架构,并分享了开发过程中的调试经验。作者认为MFC虽然界面刻板,但其设计思想影响深远,为后来的MVC框架奠定了基础。原创 2025-07-13 10:07:37 · 1083 阅读 · 0 评论 -
老码农和你一起学AI:Python系列- NumPy 核心操作详解
本文介绍了NumPy的核心操作,包括索引与切片、广播机制、向量化操作和形状操作。索引与切片涉及基础索引和高级索引(布尔索引、整数数组索引),需注意视图与副本的区别。广播机制使不同形状数组能运算,需遵循维度对齐规则。向量化操作通过内置函数替代循环提升性能,包括算术运算、比较运算和聚合函数。形状操作如reshape()、transpose()等用于调整数组结构。这些操作是数据处理、科学计算和深度学习的基础,掌握后能高效安全地处理数组数据。原创 2025-07-12 11:20:13 · 683 阅读 · 0 评论 -
技术演进中的开发沉思-32 MFC系列:生命周期
本文梳理了MFC框架的核心概念:类层次结构如同家族族谱,CObject为基类;程序需要函数库和头文件作为"食材";典型程序包含CWinApp和CFrameWnd类;消息映射机制像邮局分拣系统,将消息与处理函数绑定;空闲处理机制适合后台轻量任务;对话框与控件则像商店柜台与商品,提供用户交互界面。文章通过生动比喻展现了MFC的设计思想,包括封装、继承和消息驱动等特性,这些概念至今仍影响着现代GUI框架。原创 2025-07-12 10:42:51 · 929 阅读 · 0 评论 -
老码农和你一起学AI:Python系列-数值计算NumPy
NumPy作为Python科学计算的核心库,是深度学习技术栈的基础支撑。本文梳理了NumPy的关键知识点:1)NumPy在深度学习中的基础性作用,包括作为TensorFlow/PyTorch的底层依赖;2)ndarray多维数组的核心特性与创建方法;3)数据类型(dtype)的选择对内存、计算精度和性能的影响。与Python列表相比,NumPy数组通过同质数据类型和连续存储实现数十倍的性能提升,其简洁的向量化语法也降低了代码复杂度。掌握这些知识对高效处理AI开发中的大规模数据至关重要。原创 2025-07-11 08:02:46 · 1020 阅读 · 0 评论 -
技术演进中的开发沉思-31 MFC系列:类层次结构
MFC框架采用类层次结构设计,将Windows编程模块化。以CObject为根基类,派生三大核心分支:CCmdTarget负责消息处理,延伸出应用程序类CWinApp、窗口类CWnd(含CFrameWnd、CDialog等)和文档类CDocument。其它功能类如CDC绘图家族、CString数据处理和控件类(CButton等)各司其职。这种层级分明的设计通过继承与封装,将复杂API转化为可重用的组件,使开发者能聚焦业务逻辑而非底层细节。MFC的类层次不仅是技术实现,更体现了面向对象的设计思想,对理解现代框原创 2025-07-11 07:42:05 · 856 阅读 · 0 评论