目录
一、什么是损失函数
什么是损失函数:简单的理解就是每一个样本经过模型后会得到一个预测值,然后得到的预测值和真实值的差值就成为损失。
为什么引入损失函数:通过对比计算网络的前向传播结果和真实结果,计算出来的用于衡量两者之间差距的函数值。
二、经验风险与结构风险
经验风险
机器学习模型关于训练数据集的平均损失称为经验风险。
结构风险
结构风险是在经验风险的基础上加上表示模型复杂度的正则项(罚项)。
三、分类损失函数
代表算法 | 说明 | |
1.Hing-Loss |
|
当用于标准SVM时,损失函数表示线性分隔符与其中任一类中的最近点之间的边距长度。 只有在p = 2时处处可导。 |
2.Log-Loss |
Logistic回归 | 机器学习中最受欢迎的损失功能之一,因为它能输出概率 |
3.Exponential Loss |
Adaboost | 错误预测的丢失随着值的增加呈指数增长 −hw(xi)yi−hw(xi)yi |
4.Zero-One Loss |
实际分类损失 | 不连续,不容易优化 |
5 Cros |