神经网络深度学习(一)损失函数

目录

一、什么是损失函数 

二、经验风险与结构风险

三、分类损失函数

四、回归损失函数及其特点

五、正则化

六、损失函数深入理解

1 分类问题可以使用MSE(均方误差)作为损失函数吗

2 softmax loss vs 交叉熵 loss

3 为什么交叉熵损失函数有log项?

4 交叉熵为什么可以作为损失函数?

5 SVM损失函数

6 Yolo的损失函数

7 iou计算


一、什么是损失函数 

什么是损失函数:简单的理解就是每一个样本经过模型后会得到一个预测值,然后得到的预测值和真实值的差值就成为损失

为什么引入损失函数:通过对比计算网络的前向传播结果和真实结果,计算出来的用于衡量两者之间差距的函数值。

二、经验风险与结构风险

经验风险
机器学习模型关于训练数据集的平均损失称为经验风险。

结构风险

结构风险是在经验风险的基础上加上表示模型复杂度的正则项(罚项)。

三、分类损失函数

Loss(h_w(X_i,yi)) 代表算法 说明

1.Hing-Loss

max(1 - h_w(x_i)y_i,0)p

  • 标准SVM(p=1)
  • (Differentiable) Squared Hingeless SVM (p=2)                                   
当用于标准SVM时,损失函数表示线性分隔符与其中任一类中的最近点之间的边距长度。 只有在p = 2时处处可导。   

2.Log-Loss

log(1+e^{-h_w(x_i)y_i})

Logistic回归                                

机器学习中最受欢迎的损失功能之一,因为它能输出概率

3.Exponential Loss 

e^{-h_w(x_i)y_i}

Adaboost 错误预测的丢失随着值的增加呈指数增长

−hw(xi)yi−hw(xi)yi

4.Zero-One Loss 

\delta(sign(h_w(xi)) \neq yi)

        
 实际分类损失  不连续,不容易优化

Cros

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值