吴恩达《deeplearning深度学习》课程学习笔记【2】(精简总结)

这篇博客是吴恩达《deeplearning深度学习》课程的学习笔记精简版,涵盖第三周浅层神经网络的向量化和随机初始化,第四周深层网络结构的重点,包括多层网络参数维度、正向传播与反向传播、学习率、归一化行、Softmax函数、np.dot()与np.multiply()的使用,以及L1和L2损失函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

毕业以后就没再写过博客,又想起来了。

Ps:本文只是个人笔记总结,没有大段的详细讲解,仅仅是将自己不熟悉和认为重要的东西总结下来,算是一个大纲,用的时候方便回忆和查找。
Ps2:部分笔记内容见图片。

相关课程内容

一、神经网络和深度学习
  • 第三周 浅层神经网络
  • 第四周 深层网络结构

知识点总结

第三周 浅层神经网络

1. 向量化
  • m个实例
    正向传播:
    这里写图片描述

    反向传播:
    这里写图片描述

2. 随机初始化(Random Initialization)

(1)全零初始化

  • W权值初始化为0的问题:隐藏层所有的隐藏单元都在做相同的计算。(隐藏单元会是对称的,因而不能起到什么作用)
  • 随机初始化时的参数最好比较小,以便一开始的学习速度比较快。
  • b权值可以初始化为0。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值