tipdm数据挖掘案例:信用卡高风险客户识别

1   项目背景

某地区的信用卡产业始于 20 世纪 80 年代,1989 年开始向外资银行开放市场后,依托 合理风险下的经营理念,特别是开创了信用卡销售外包模式,迅速占领了该地区的信用卡市 场。发卡量从 1989 年的 50 多万张一跃到 1995 年的 500 多万张。

信用卡高速发展的背后是坏账风险的不断增大。据统计,2006 年,该地区有 900 多万 人拥有信用卡,现金卡,交不起卡债的人已达 70 多万,造成银行呆账超过 1500 亿新台币。 100 名有收入的人之中就有 6 人是卡奴,人均欠债 100 多万新台币。给整个地区的银行信用 卡业务蒙上了一层阴影。

为了推进信用卡业务良性发展,减少坏账风险,该地区各大银行都进行了信用卡客户风 险识别相关工作,建立了相应的客户风险识别模型。某银行因旧的风险识别模型随时间推移, 不再适应业务发展需求,需要重新进行风险识别模型构建

2   项目目标

1) 判断识别出哪些客户为高风险类客户,哪些客户为禁入类客户。

2) 对不同客户类别进行特征分析,比较不同客户的风险。

3) 评估该机构的信用卡业务风险,针对目前的情况提出风控建议。

3   项目步骤

3.1  工程前期准备
3.1.1 导入数据

1) 介绍数据

目前,银行给出的数据的数据如表 3-1 示。

3-1 信用卡信息数据说明表

变量名称

变量取值说明

示例

顾客编号

CDMS0000001

申请书来源

1.Take-One 邮寄件 2.现场办卡 3.电访 4.亲签亲访 5.亲访 6.亲签 7.本行 VIP PB8.其他

1

瑕疵户

1. 2.

2

逾期

1. 2.

1

呆账

1. 2.

2

借款余额

1. 2.

1

退票

1. 2.

2

拒往记录

1. 2.

1

强制停卡记录

1. 2.

2

张数

1.1  2.2  3.3  4.4  5.大于 4 

5

频率

1.天天用2.经常用 3.偶而用4.很少用 5.没有用

2

户籍

1.北部 2.中部 3.南部 4.东部

3

都市化程度

1.都会 2.都市 3.城镇

2

性别

1.

1</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

军哥说AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值