1 项目背景
某金融服务机构拥有上亿会员,并且业务场景中每天都涉及大量的资金流入和流出,面 对如此庞大的用户群,资金管理压力会非常大。在既保证资金流动性风险最小,又满足日常 业务运转的情况下,精准地预测资金的流入流出情况变得尤为重要。企业希望能精准预测未 来每日的资金流入流出情况。对货币基金而言,资金流入意味着申购行为。资金流出意味着 赎回行为。
2 项目目标
基于企业希望精确预测资金流入流出数量的需求,设定项目目标为:预测蚂蚁金服次月 每天的申购总额。
3 项目步骤
3.1 工程前期准备
3.1.1 导入数据
(1) 介绍数据
用户申购赎回数据表:表中包含 2013 年 7 月 1 日 至 2014 年 8 月 31 日的申购和赎回 信息、以及所有的子类目信息。数据经过脱敏处理,脱敏之后的数据,基本保持了原数据分 布。数据主要包括用户操作时间和操作记录,其中操作记录包括申购和赎回两个部分。金额 的单位是分,即 0.01 元人民币。 如果用户今日消费总量为 0,即 consume_amt=0,则四个子类目为空。如表 3-1 所示。
表 3-1 用户申购赎回数据表
属性 |
含义 |
示例 |
user_id |
用户 id |
1234 |
report_date |
日期 |
20140407 |
tBalance |
今日余额 |
109004 |
yBalance |
昨日余额 |
97389 |
total_purchase_amt |
今日总购买量 = 直接购 买 + 收益 |
21876 |
direct_purchase_amt |
今日直接购买量 |
21863 |
purchase_bal_amt |
今日支付宝余额购买量 |
0 |
< |