240-搜索二维矩阵 II

这篇博客介绍了两种在有序矩阵中寻找目标值的高效算法:一是从右上角开始的搜索策略,当目标值大于当前元素时向下移动,小于时向左移动;二是对每一行应用二分查找的方法。这两种方法充分利用了矩阵的有序特性,提高了搜索效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:

每行的元素从左到右升序排列。
每列的元素从上到下升序排列。

示例 1:

输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
输出:true
示例 2:

输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20
输出:false

题解一 右上角搜索

var searchMatrix = function(matrix, target) {
    if(matrix.length===0)return false
    let [row,col]=[0,matrix[0].length-1]// 初始化位置
    while(row<=matrix.length-1&&col>=0){
        if(matrix[row][col]>target){
            col--
        }else if(matrix[row][col]<target){
            row++
        }else{return true}
    }
    return false
};

笔记:

  1. 从右上角开始对比,若target大就向下,若target小就向左。

  2. 以左下角或右上角为根的bst

题解二 二分查找

var searchMatrix = function(matrix, target) {
    for (const row of matrix) {
        const index = search(row, target);
        if (index >= 0) {
            return true;
        }
    }
    return false;
};

const search = (nums, target) => {
    let low = 0, high = nums.length - 1;
    while (low <= high) {
        const mid = Math.floor((high - low) / 2) + low;
        const num = nums[mid];
        if (num === target) {
            return mid;
        } else if (num > target) {
            high = mid - 1;
        } else {
            low = mid + 1;
        }
    }
    return -1;
}

笔记:

  1. 对每行进行二分搜索
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

codrab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值