离散动态贝叶斯网络

概述

朴素贝叶斯分类器基于一个简单的假定:给定目标值时属性之间相互条件独立(实际上在现实应用中几乎不可能做到完全独立),现实中各个特征属性间往往并不条件独立,而是具有较强的相关性,这样就限制了朴素贝叶斯分类的能力。这时就需要贝叶斯网络了,贝叶斯网络也称信念网络(Belief Networks)或者因果网络(Causal Networks),是描述变量之间以来关系的一种图形模型,也是一种用来推理的模型。

贝叶斯构造与学习

  构造与训练贝叶斯网络分为以下两步:

  1、确定随机变量间的拓扑关系,形成DAG。这一步通常需要领域专家完成,而想要建立一个好的拓扑结构,通常需要不断迭代和改进才可以。

  2、训练贝叶斯网络。这一步也就是要完成条件概率表的构造。但是通常贝叶斯网络的中存在隐藏变量节点,那么训练方法就是比较复杂,例如使用梯度下降法。由于这些内容过于晦涩以及牵扯到较深入的数学知识,在此不再赘述,有兴趣的朋友可以查阅相关文献。

贝叶斯网络基础及其推到

发现了比较好的例子,我就不写了。
转一下吧^_^
http://www.dataguru.cn/thread-508373-1-1.html

### 离散时间贝叶斯网络原理 离散时间贝叶斯网络(Discrete-Time Bayesian Network, DTBN),作为贝叶斯网络的一种扩展形式,特别适用于处理随时间变化的数据序列。DTBN不仅继承了静态贝叶斯网络中节点间条件独立性的假设,还引入了时间维度来描述不同时间节点上的状态转移特性[^1]。 在一个典型的DTBN框架下,整个系统被划分为多个连续的时间片段,在每一个时间点t处存在一组随机变量X_t={X_1(t), X_2(t)...}代表该时刻系统的各个组成部分的状态。随着时间推移,这些变量会依据一定的概率规律发生变化,形成从过去到未来的演化路径。为了简化计算并提高可操作性,通常会对相邻两个时间段内的变量关系做出特定假设: - **马尔科夫性质**:当前时段的状态仅取决于前一时段的状态,而其他更早的历史无关; - **平稳性假设**:各阶段间的转换模式保持不变; 这种设定使得我们可以利用矩阵运算高效求解复杂的多步预测问题,并且能够方便地融入先验知识来进行参数估计。 ### 应用实例分析 考虑到实际应用场景中的多样性需求,下面列举几个典型领域内DTBN的具体运用方式: #### 故障诊断维护决策支持系统 通过对设备运行状况监测数据建立DTBN模型,可以有效捕捉潜在故障发生的征兆及其发展趋势,从而提前预警可能存在的风险因素。此外,借助于历史维修记录构建的经验库,还可以进一步优化预防性保养策略的选择标准,降低意外停机造成的经济损失。 #### 生物医学信号解读平台 针对心电图、脑电波等生理指标所组成的时序型观测集,采用DTBN方法有助于揭示隐藏在其背后的病理机制以及个体差异特征。研究人员可以根据已知病症样本训练得到针对性强的识别器,辅助临床医生快速准确判断病情严重程度和发展趋势。 ```python import numpy as np from pgmpy.models import DynamicBayesianNetwork as DBN from pgmpy.factors.discrete import TabularCPD # 创建一个简单的两层DBN (T=0 和 T=1),每层有两个节点A,B dbn_model = DBN() edges = [('A_0', 'B_0'), ('A_0', 'A_1'), ('B_0', 'B_1')] dbn_model.add_edges_from(edges) cpd_a0 = TabularCPD(variable='A_0', variable_card=2, values=[[0.7], [0.3]]) cpd_b0 = TabularCPD(variable='B_0', variable_card=2, evidence=['A_0'], evidence_card=[2], values=[[0.8, 0.4], [0.2, 0.6]]) cpd_a1 = TabularCPD(variable='A_1', variable_card=2, evidence=['A_0'], evidence_card=[2], values=[[0.9, 0.5], [0.1, 0.5]]) cpd_b1 = TabularCPD(variable='B_1', variable_card=2, evidence=['A_1', 'B_0'], evidence_card=[2, 2], values=[[0.7, 0.3, 0.4, 0.6], [0.3, 0.7, 0.6, 0.4]]) dbn_model.add_cpds(cpd_a0, cpd_b0, cpd_a1, cpd_b1) print(dbn_model.check_model()) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值