深入解析航空飞行数据中的秘密:从数据清理到高级分析
1. 引言
在当今数据驱动的世界中,航空飞行数据不仅是航空公司运营的核心,也是数据科学家们研究的重要对象。通过分析这些数据,我们可以揭示航班延误的原因、优化航线规划、提高乘客满意度,甚至预测未来的飞行趋势。本文将详细介绍如何使用R语言处理和分析航空飞行数据,从基础的数据清理到复杂的回归分析,逐步揭示数据背后的故事。
2. 数据来源与环境搭建
2.1 数据集简介
航空飞行数据通常包含丰富的信息,如航班号、起飞时间、降落时间、飞行距离、延误情况等。我们将使用一个名为 flights
的数据集,它记录了2013年从纽约市出发的所有国内航班信息。这个数据集位于 nycflights13
包中,可以通过以下步骤加载:
install.packages("nycflights13")
library(nycflights13)
2.2 环境配置
为了更好地处理和可视化数据,我们需要安装并加载一些常用的R包,如 tidyverse
,它集合了许多强大的数据处理和绘图工具。
install.packages("tidyverse")
library(tidyverse)
3. 数据预处理
3.1 缺失值处理
在实际应用中,数据往往存在缺失值,