Gopro hero5运动相机格式化后恢复案例

文章讲述了GoproHero5运动相机在格式化MicroSD卡后,THM、LRV和MP4文件的碎片特性导致数据恢复困难。推荐使用CHS零壹视频恢复程序,通过步骤扫描并找到丢失的MP4文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Gopro运动相机以稳定著称,旗下的Hero系列销售全球。下面我们来看一个Hero5格式化后拍了少量素材的恢复案例。

故障存储:64G MicroSD卡  Exfat文件系统

故障现象:

64G的卡没备份数据时做了格式化操作又拍了一条,发现数据没有备份,客户自行使用通用类恢复软件扫描可以看到文件和目录关系,但是恢复后所有视频都无法打开。

故障分析:

Gopro之前也说过很多次,其在采集画面时一般是生成三个文件,THM、LRV、MP4,其中THM是第一帧的静态画面,另外两个一个是预览的分辨率较低小视频LRV(用于在GORPO小屏上播放),一个是分辨率较高的视频MP4。这两个文件是交叉排队写入,所以存在大量碎片。这个是通用类恢复软件恢复后无法播放的主因,因为格式化后FAT表清0,文件链表不存在,所以只能通过起始簇和文件大小进行恢复,这也就导致了恢复错误。

图1:空闲空间很大

图2:仅采集了一条素材所以占用空间不多

故障处理:

此类情况可以使用CHS零壹视频恢复程序标准版/专业版/高级版或者gopro版扫描,我们使用Gopro版扫描,选择逻辑盘(逻辑盘是指带文件系统的盘符,RAW的是物理盘),点击右键“扫描”

STEP1:直接扫描,扫描大类不用动默认是记录仪,然后打开样本文件,此时扫描小类会自动切换到“0:导入样本文件自动分析”

STEP2:直接扫描,等待完成。

STEP3:查看数据,可以看到此时查找的数据都正常,也可以直接预览,经过对比成功找到了客户所需要的数据。

这就是Gopro运动相机HERO系列MP4文件的恢复方法,大家在遇到此类问题时,可以和我们联系!

点击下载CHS零壹视频恢复程序gopro版

内容概要:本文详细介绍了DirectX修复工具的功能及其重要性。DirectX是微软开发的多媒体编程接口,广泛应用于游戏开发、多媒体播放和工业设计等领域。它包含Direct3D、Direct2D、DirectInput、DirectSound和DXGI等多个组件,这些组件协同工作,为多媒体应用提供全面支持。然而,由于软件安装与卸载、驱动程序更新、系统升级、病毒攻击和硬件故障等因素,DirectX可能出现问题,导致游戏或软件无法启动、画面显示异常、音频问题等。DirectX修复工具通过全面检测、智能修复、备份与还原、解决关键错误等功能,帮助用户快速准确地修复这些问题,确保系统恢复正常运行。文中还详细讲解了修复工具的不同版本(标准版、增强版、在线修复版)的特点,以及使用过程中可能遇到的问题及解决方法。 适合人群:适用于所有使用Windows操作系统的用户,尤其是游戏玩家和多媒体软件用户。 使用场景及目标:①帮助用户解决因DirectX故障导致的游戏无法启动、画面显示异常、音频问题等;②确保多媒体应用正常运行,避免图形显示错误、色彩异常等问题;③为不具备专业知识的普通用户提供便捷的修复方案。 其他说明:使用DirectX修复工具时,用户应确保下载来源的安全性,保持修复过程的稳定性,并可在必要时尝试多次修复或更换其他修复工具。此外,文中还提供了详细的使用教程,包括下载渠道、安装与解压、运行与检测、查看结果与修复以及诊断功能的使用,帮助用户更好地理解和操作修复工具。
内容概要:本文综述了电能质量扰动(PQDs)检测与识别的研究现状。随着新能源发电的快速发展,PQDs问题日益严重。文章梳理了当前研究中的关键问题,包括信号特征检测精度不足、特征选择冗余及扰动类型识别能力有限等。详细阐述了基于先进信号处理技术的特征检测方法、智能算法的特征提取策略以及深度学习模型的分类识别技术,分析了各类方法的优缺点。最后指出了当前研究中存在的问题,并对未来发展趋势进行了展望。此外,文章还提供了详细的代码实现,涵盖了从信号生成、特征提取到基于深度学习的分类识别,再到结果分析与可视化的全过程。 适合人群:具备一定电能质量基础知识和编程能力的研发人员、研究生及以上学历的电力系统研究人员。 使用场景及目标:①适用于电力系统监测与维护部门,帮助其提升对电能质量扰动的检测与识别能力;②为高校和科研机构提供理论依据和技术支持,推动相关领域的学术研究;③为企业研发团队提供实用的技术方案,助力开发更高效的电能质量监测产品。 其他说明:本文不仅提供了理论分析,还通过具体代码实现了多种先进的检测与识别方法,包括但不限于小波变换、FFT、STFT、CNN、LSTM等。这些方法能够有效应对实际应用中的复杂情况,如高噪声环境下的信号处理、多类型扰动的精确分类等。同时,文中还探讨了未来的研究方向,如基于Transformer的端到端识别架构、结合物理约束的深度学习、边缘计算部署优化等,为后续研究提供了有价值的参考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值