智灵(ZHILING)安防监控初始化的恢复方法

智灵(ZHILING)是江苏的一个安防品牌,算是比较小众。其使用嵌入式安防文件系统,不过看底层结构其应该是抄袭了某大厂的嵌入式安防文件系统,下面我们讲下当遇到此类产品被初始化的恢复方法。

故障存储:

西数(WDC WD20NMVW)2TB硬盘

故障现象:

客户描述是使用了监控系统中的初始化功能,然后导致原始数据全部丢失,出现问题后又使用了一小段时间。

故障分析:

由于国际对安防产品的要求,现在市场上主流的安防产品基本上都采用“嵌入式文件系统”,所谓嵌入式主要体现在数据的写入和读取都是不可见的,也就是一种非标准的文件系统,不具备通用性,需要在指定的设备上才能完成对数据的读取、写入等操作,这样整体的安全性就有了很大的提升。最直观的就是当采用嵌入式文件系统的存储设备连接到windows系统下时是无法浏览数据的,磁盘也会提示需要初始化。

友情提示,目前市场上大多数产品都使用“嵌入式文件系统”,所以当大家遇到需要备份数据时请使用U盘或者移动硬盘连接到录像机上来进行备份,不要把硬盘接到windows系统下,这种情况很容易误操作!

而此查看此硬盘的型号可以看出来是一款2.5寸的移动硬盘,并非标准的3.5寸硬盘。安防监控中我们遇到最多的硬盘就是3.5寸的硬盘,这一类硬盘在稳定性上比2.5寸的硬盘更好,另外在安防设备中我们强烈建议您使用专门的监控硬盘(希捷和西数都有监控专用硬盘),监控盘是硬盘厂商根据安防产品频繁读/写的使用场景而设计的,可以更好的延长硬盘的使用寿命!

故障处理:

监控类的恢复可以使用CHS零壹视频恢复程序监控版、专业版、高级版来扫描,这里我们使用监控版来扫描。

STEP1:选择要扫描的磁盘点击右键->扫描小类选择“BlueSky蓝色星际”,点击“扫描”

STEP2:等待扫描完成

STEP3:扫描完成后直接查看数据,可以看到程序已经列出了通道、起始时间、结束时间、时长、文件长度等参数,通过此参数可以查找需要的数据。经过对比成功恢复了客户需要的数据,至此恢复完成!

这就是智灵(ZHILING)安防监控初始化后的恢复方法,大家在遇到此类问题时,可以和CHS数据实验室联系!

内容概要:本文详细介绍了DirectX修复工具的功能及其重要性。DirectX是微软开发的多媒体编程接口,广泛应用于游戏开发、多媒体播放和工业设计等领域。它包含Direct3D、Direct2D、DirectInput、DirectSound和DXGI等多个组件,这些组件协同工作,为多媒体应用提供全面支持。然而,由于软件安装与卸载、驱动程序更新、系统升级、病毒攻击和硬件故障等因素,DirectX可能出现问题,导致游戏或软件无法启动、画面显示异常、音频问题等。DirectX修复工具通过全面检测、能修复、备份与还原、解决关键错误等功能,帮助用户快速准确地修复这些问题,确保系统恢复正常运行。文中还详细讲解了修复工具的不同版本(标准版、增强版、在线修复版)的特点,以及使用过程中可能遇到的问题及解决方法。 适合人群:适用于所有使用Windows操作系统的用户,尤其是游戏玩家和多媒体软件用户。 使用场景及目标:①帮助用户解决因DirectX故障导致的游戏无法启动、画面显示异常、音频问题等;②确保多媒体应用正常运行,避免图形显示错误、色彩异常等问题;③为不具备专业知识的普通用户提供便捷的修复方案。 其他说明:使用DirectX修复工具时,用户应确保下载来源的安全性,保持修复过程的稳定性,并可在必要时尝试多次修复或更换其他修复工具。此外,文中还提供了详细的使用教程,包括下载渠道、安装与解压、运行与检测、查看结果与修复以及诊断功能的使用,帮助用户更好地理解和操作修复工具。
内容概要:本文综述了电能质量扰动(PQDs)检测与识别的研究现状。随着新能源发电的快速发展,PQDs问题日益严重。文章梳理了当前研究中的关键问题,包括信号特征检测精度不足、特征选择冗余及扰动类型识别能力有限等。详细阐述了基于先进信号处理技术的特征检测方法能算法的特征提取策略以及深度学习模型的分类识别技术,分析了各类方法的优缺点。最后指出了当前研究中存在的问题,并对未来发展趋势进行了展望。此外,文章还提供了详细的代码实现,涵盖了从信号生成、特征提取到基于深度学习的分类识别,再到结果分析与可视化的全过程。 适合人群:具备一定电能质量基础知识和编程能力的研发人员、研究生及以上学历的电力系统研究人员。 使用场景及目标:①适用于电力系统监测与维护部门,帮助其提升对电能质量扰动的检测与识别能力;②为高校和科研机构提供理论依据和技术支持,推动相关领域的学术研究;③为企业研发团队提供实用的技术方案,助力开发更高效的电能质量监测产品。 其他说明:本文不仅提供了理论分析,还通过具体代码实现了多种先进的检测与识别方法,包括但不限于小波变换、FFT、STFT、CNN、LSTM等。这些方法能够有效应对实际应用中的复杂情况,如高噪声环境下的信号处理、多类型扰动的精确分类等。同时,文中还探讨了未来的研究方向,如基于Transformer的端到端识别架构、结合物理约束的深度学习、边缘计算部署优化等,为后续研究提供了有价值的参考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值