警翼(Pe)执法记录仪格式化后的恢复方法

警翼(Pe)专注于为执法执勤部门提供以执法记录仪为核心,包括警翼移动执法视音频解决方案,是国内较早进入执法记录仪行业的企业之一。其执法仪产品使用底层加密的方式来确保数据的安全性,但在使用层方面基本上觉察不到加密带来的延迟,在技术实现上可圈可点。下边我们来看看,警翼(Pe)执法记录仪格式化后的恢复方法。

故障存储:

 16GB内置存储/文件系统:FAT32 /簇大小:32KB

故障现象:

客户描述此执法记录仪是一款老设备,某次使用后做了格式化,然后又拍摄了少量的视频片段,后期由于设备升级此设备被封存没有再使用,需要恢复几条重要的视频文件。经过查看确实写入了少量的视频文件,不过不算多(图1)。

图1:剩余空间还有13.2GB(总容量14.84GB)

故障分析:

警翼(Pe)的执法记录仪由于产品的特殊性,所以其底层存储时是无法做到连续写入的(具体原因参考博主相关帖子)。针对碎片化的文件通用类恢复软件基本上能做的就是在获取了FAT32目录项中的文件属性(如长度和首簇指针)的时候做一个连续化提取的 “错误”的恢复方式(表现为文件大小、文件名正常但无法播放)。实际上客户也尝试过使用通用类恢复软件扫描,结果是视频全部无法打开。

故障处理:

由于警翼(Pe)执法记录仪底层加密的原因,所以强烈建议使用先镜像再扫描的方式,具体解密请使用警翼(Pe)自带的程序输入设备密码即可。解密后使用各种恢复工具镜像(也可以使用CHS零壹视频恢复程序高级版镜像),镜像完成后使用“CHS零壹视频恢复程序高级版”进行扫描。

STEP1:选择镜像,扫描大类选择 “记录仪视频”->打开样本文件,然后点击右键“扫描”。

无论是扫描什么视频文件,我们强烈建议打开样本文件,程序分析算法会根据视频文件的各个参数建立精确的模型,这样在扫描和重组时做到“有的放矢”。

STEP2:等待扫描完成,由于存储设备空间不大,所以扫描是极快的。

STEP3:扫描完成后直接查看数据,可以看到程序已经列出了视频类型、级别、拍摄时间、摄像机型号、视频编码、时长、长度、等参数,这些参数为查找数据提供了便利。通过对比查看带时间的文件并没有客户需要的,所以重点查找5级文件(无拍摄时间级别为5),这一类文件是没有结构体的数据文件,形成的原因一般是由于断电或者覆盖,本例中很明显是存在覆盖的情况,选择5级文件保存后进行修复。

图4:由于拍摄时间中没有找到所需要的文件所以重点查找L5级文件

STEP4:先保存L5级文件,然后点击程序左上方的“视频修复”按钮切换到修复界面。

修复方法也很简单:

1、添加“样本文件”(同设备拍摄时长至少3分钟具体样本文件要求参考博主相关帖子);

2、点击 “损坏文件批量”添加所有L5级文件;

3、点击“修复”即可。

图5:切换“视频修复”界面开始5级文件修复

STEP5:由于文件数量较多,而执法记录仪画面上都有时间,所以在修复完成后点击“OCR获取”功能进行OCR识别时间(具体方法参考博主相关帖子)。识别完成后经过对比查看所需要的5个视频文件全部都在,至此恢复完成。

图6:OCR识别后成功得到了画面时间

这就是警翼(Pe)执法记录仪格式化后的恢复方法,大家在遇到此类问题时,可以和CHS数据实验室联系!

点击下载CHS零壹视频恢复程序高级版

内容概要:本文详细介绍了Maven的下载、安装与配置方法。Maven是基于项目对象模型(POM)的概念,用于项目管理和构建自动化的工具,能有效管理项目依赖、规范项目结构并提供标准化的构建流程。文章首先简述了Maven的功能特点及其重要性,接着列出了系统要求,包括操作系统、磁盘空间等。随后,分别针对Windows、macOS和Linux系统的用户提供了详细的下载和安装指导,涵盖了解压安装包、配置环境变量的具体操作。此外,还讲解了如何配置本地仓库和镜像源(如阿里云),以优化依赖项的下载速度。最后,给出了常见的错误解决方案,如环境变量配置错误、JDK版本不兼容等问题的处理方法。 适合人群:适用于初学者以及有一定经验的Java开发人员,特别是那些希望提升项目构建和依赖管理效率的技术人员。 使用场景及目标: ①帮助开发者掌握Maven的基本概念和功能特性; ②指导用户完成Maven在不同操作系统上的安装与配置; ③教会用户如何配置本地仓库和镜像源以加快依赖项下载; ④解决常见的安装和配置过程中遇到的问题。 阅读建议:由于Maven的安装和配置涉及多个步骤,建议读者按照文中提供的顺序逐步操作,并仔细检查每个环节的细节,尤其是环境变量的配置。同时,在遇到问题时,可参考文末提供的常见问题解决方案,确保顺利完成整个配置过程。
资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 旅行商问题(Traveling Salesman Problem, TSP)是一种经典的组合优化问题,目标是找到一条最短路径,让推销员访问一系列城市后返回起点,且每个城市只访问一次。该问题可以转化为图论问题,其中城市是节点,城市间的距离是边的权重。遗传算法是一种适合解决TSP这类NP难问题的全局优化方法,其核心是模拟生物进化过程,包括初始化、选择、交叉和变异等步骤。 初始化:生成初始种群,每个个体(染色体)表示一种旅行路径,通常用随机序列表示,如1到18的整数序列。 适应度计算:适应度函数用于衡量染色体的优劣,即路径总距离。总距离越小,适应度越高。 选择过程:采用轮盘赌选择机制,根据适应度以一定概率选择个体进入下一代,适应度高的个体被选中的概率更大。 交叉操作:一般采用单点交叉,随机选择交叉点,交换两个父代个体的部分基因段生成子代。 变异操作:采用均匀多点变异,随机选择多个点进行变异,变异点的新值在预设范围内随机生成,以维持种群多样性。 反Grefenstette编码:为确保解的可行性,需将变异后的Grefenstette编码转换回原始城市序列,即对交叉和变异结果进行反向处理。 迭代优化:重复上述步骤,直至满足终止条件,如达到预设代数或适应度阈值。 MATLAB是一种强大的数值和科学计算工具,非常适合实现遗传算法。通过编写源程序,可以构建遗传算法框架,处理TSP问题的细节,包括数据结构定义、算法流程控制以及适应度计算、选择、交叉和变异操作的实现。遗传算法虽不能保证找到最优解,但在小规模TSP问题中能提供不错的近似解。对于大规模TSP问题,可结合局部搜索、多算法融合等策略提升解的质量。在实际应用中,遗传算法常与其他优化方法结合,用于解决复杂的调度和路径规划问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值