构造题专练

这篇博客探讨了一道关于构造题的解决方案,作者通过分析置换并将其分解为循环置换,发现可以通过调整某些位置来实现目标。关键在于识别并解决非寄存器位置与寄存器位置的冲突,通过预先交换和后续操作,成功构造出解答。博客中提到的策略是对原有置换的操作进行微调,并着重关注循环置换的首尾位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[THUPC2022 初赛] 造计算机

这是一道很水的构造题

首先我们把一个置换拆分成若干个循环置换的乘积,例如:

请添加图片描述
讲一下怎么通过循环置换还原成原来那个:

在这里插入图片描述

请添加图片描述

这样的话,上面那一行表示下标,下面那一行表示对应位置上的数。

这道题经过简单分析我们可以发现 m=1 是不可能的,因此很自然而然地想到 m=2 就是答案。

因为每个环之间是独立的,所以我们分别分析。

先来看这个置换:

请添加图片描述

一个很自然的想法是按(3,2,1)即循环置换的顺序来操作,会很舒服地发现基本所有数都能归位,但最后一步却无论如何也执行不了。

请添加图片描述
经过简单分析我们发现原因在于 :

  1. 一个非寄存器的位置占据了原本寄存器的位置,导致原本的寄存器无法归位
  2. 另一个寄存器没有发挥用处

于是我的解决方案是:我们在做上述操作前,把这两个寄存器和非寄存器的位置先调换一下,然后再用另一个寄存器来操作。最后原来那个寄存器被调换了出来,而另一个寄存器则可以和 n+1 位置调换,也能被调换出来。

请添加图片描述
此时我们再回看原来的循环置换:

请添加图片描述
可以发现我完全就是在复制这个置换上的操作,只不过加了少量调整而已。而如果仔细观察的话,会发现我操作的位置其实就是这个循环置换的首尾,所以其实并不难寻找。

总结:这道题我主要是突然有了灵感,想到在循环置换的形式上做文章,最后得到了合适的构造方案。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值