
EEG脑电信号处理
文章平均质量分 91
闪电科创
985算法团队,专业解决人工智能,深度学习等领域问题
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【EEG分类】gamma band power
在EEG信号中占有重要的地位,尤其是在认知神经科学、临床神经科学和脑机接口等领域。以下是关于。原创 2025-06-25 08:30:00 · 763 阅读 · 0 评论 -
EEG分类 - Theta 频带 power
*Theta波(4-8 Hz)**在EEG信号中代表着大脑的放松、注意力集中以及记忆等认知过程。Theta波功率通常通过功率谱密度(PSD)估算,常见方法包括Welch方法和小波变换。在临床、认知研究以及情绪分析中,theta波功率是一个重要的指标,能够提供关于个体生理和心理状态的有价值信息。原创 2025-06-23 22:24:44 · 700 阅读 · 0 评论 -
EEG分类攻略2-Welch 周期图
在EEG信号处理的上下文中,使用来估算信号的功率谱密度(Power Spectral Density, PSD)是一种常见的做法。你的代码片段是利用****函数来进行功率谱密度估算,并且涉及到一些关键的参数和步骤。让我们逐步分析这个代码片段的含义和作用。原创 2025-06-23 20:50:27 · 961 阅读 · 0 评论 -
EEG 分类攻略1- theta, alpha, beta和gamma频谱
Welch方法是一种改进的周期图估计方法,它通过将信号分割成重叠的子段,每个子段都进行快速傅里叶变换(FFT),然后对每个子段的频谱进行加权平均,从而得到更为平滑和稳定的功率谱估计。原创 2025-06-23 20:25:37 · 1299 阅读 · 0 评论