寻找二叉树上从根结点到给定结点的路径

寻找二叉树上从根结点到给定结点的路径

一、递归实现

思想:借助栈结构来保存路径上的结点,首先从根结点开始,一直往左找,如果左边找到就返回true;否则,如果左边找不到并且右子树不为空的情况下再继续往右子树找。如果左右子树都找不到,就弹出栈顶结点并返回false。方法运行完毕后,栈中保存的元素就是一条从根到给定结点的路径。

public static boolean searchNode(TreeNode root,Stack<TreeNode> s,TreeNode node) {
        if(root == null) return false;
        s.push(root);
        if(root.val == node.val) return true;
        boolean b = false;
        //先去左子树找
        if(root.left != null) b = searchNode(root.left,s,node);
        //左子树找不到并且右子树不为空的情况下才去找
        if(!b && root.right != null) b = searchNode(root.right,s,node);
        //左右都找不到,弹出栈顶元素
        if(!b) s.pop();
        return b;
    }

程序运行结束后,栈中保存的就是要求的路径,参数root代表根节点,s代表栈,node代表给定的节点。如果不想用值来比较,就直接把if(root.val == node.val)换成if(root == node),道理都是一样的。

二、非递归实现

思想:这个稍微有些复杂,当然也是要借助栈来完成。其实这里和二叉树的非递归先序遍历的思想差不多,只是在这个基础上进行一些改造。首先,新建一个栈,保存根节点。然后开始一直向左查找,查找的过程中把结点入栈。如果在向左找的过程中遇到了给定的结点,那么就输出并返回,这个过程比较好理解。关键是下面的弹栈的过程,如果在向左找的过程中遇到了null,说明当前栈顶元素的左子树为null。那么我们向栈顶元素的右子树开始查找。令p为栈顶元素,如果栈顶元素的右子树为null,那么弹出栈顶元素,并用pre来保存刚弹出的元素,之所以设置pre,是因为如果当前栈顶元素的右子树不为null的时候,不能轻易弹出,首先得去右子树上去查找,如果右孩子被弹出了,说明右子树上肯定没有,那么当前结点才可以弹出。

public static void searchNode(TreeNode root,TreeNode node) {
        if(root == null || node == null) return;
        Stack<TreeNode> s = new Stack<>();
        TreeNode p = root;
        TreeNode pre = null; //上一次出栈的结点
        while(p != null || !s.isEmpty()) {
            while(p != null) {
                //这个while循环的思想还是一直往左找,找的过程结点入栈,如果找到了就打印输出并返回。
                s.push(p);
                if(p.val == node.val) {
                    for (TreeNode treeNode : s) {
                        System.out.print(treeNode.val + " ");
                    }
                    return;
                }
                p = p.left;
            }
            //走到这一步说明栈顶元素的左子树为null,那么就开始往栈顶元素的右子树上去找。
            if(!s.isEmpty()) {
                p = s.peek();
                //如果栈顶元素的右子树为null,或者右子树被遍历过,则弹栈。
                while(p.right == null || pre != null && p.right == pre) {
                    pre = s.pop();
                    p = s.peek();
                }
                //继续遍历p的右子树
                p = p.right;
            }
        }
    }

 

posted @ 2018-08-16 13:23 neu_张康 阅读( ...) 评论( ...) 编辑 收藏
在二叉链表中查找两个节点的最近公共祖先(LCA,Least Common Ancestor)通常涉及到遍历树结构,因为二叉链表实际上可以看作是一棵层次分明的树。LCA是指两个节点之间路径上最近的那个公共节点,其特点是它到每个节点的距离都相等。 这里有一个常见的算法思路,称为“路径压缩”和“分治”思想: 1. **路径压缩**:从根节点开始,对访问过的每一个节点,将其左孩子指针连接到当前节点,右孩子保持不变。这一步可以减少后续查询的时间复杂度,使得查找过程中只需关注一条从根到目标节点路径。 2. **递归查找**:对于给定的两个节点p和q,你可以先分别找到它们在树中的最远公共祖先,然后再在这个公共祖先的路径上查找最近的一个节点。这可以通过比较p和q的祖父节点,如果它们的祖父节点相同,则这个祖父节点就是LCA;否则,LCA就在祖父节点的子节点中(即p或q所在的那一侧)。 以下是伪代码形式的大致步骤: ```python def findLCA(root, p, q): if root is None or root == p or root == q: return root left_path = findLCA(root.left, p, q) right_path = findLCA(root.right, p, q) # 如果一边的路径到达了叶子节点,另一边还没到,那么root就是LCA if left_path and not right_path: return root elif right_path and not left_path: return root else: # 两边同时到达,说明root不是LCA,需要继续找 return left_path if left_path != right_path else None ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值