JDK 8 HashMap 详解及详细源码展示

JDK 8 HashMap 详解及详细源码展示

JDK 8 的 HashMap 是 Java 集合框架中的核心实现,基于 哈希表 + 链表 + 红黑树 的复合结构,提供了高效的键值对存储和查询。本文结合源码剖析其设计哲学、核心实现及性能优化技术。

一、核心设计目标:时间复杂度 O(1) 的存取
1.1 哈希冲突解决
  • 链表法:哈希冲突时,通过链表(Entry 链)解决。
  • 红黑树优化:当链表长度超过阈值(TREEIFY_THRESHOLD = 8)时,链表转为红黑树,将最坏时间复杂度从 O(n) 优化到 O(log n)。
1.2 动态扩容
  • 负载因子:默认 loadFactor = 0.75,当元素数量超过 capacity * loadFactor 时,触发扩容。
  • 容量翻倍:扩容后容量为原来的 2 倍(newCap = oldCap << 1)。
二、源码核心类结构
// java.util.HashMap.java
public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable {
    // 默认初始容量(必须是 2 的幂)
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // 16
    // 最大容量
    static final int MAXIMUM_CAPACITY = 1 << 30;
    // 负载因子
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    // 链表转红黑树的阈值
    static final int TREEIFY_THRESHOLD = 8;
    // 红黑树转链表的阈值
    static final int UNTREEIFY_THRESHOLD = 6;

    // 哈希桶数组
    transient Node<K,V>[] table;
    // 元素数量
    transient int size;
    // 修改次数(用于快速失败机制)
    transient int modCount;
    // 扩容阈值
    int threshold;
    // 负载因子
    final float loadFactor;

    // 哈希桶节点(链表节点)
    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        K key;
        V value;
        Node<K,V> next;
    }

    // 红黑树节点
    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;
        boolean red;
    }
}
三、核心方法源码解析
3.1 put 方法
public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    // 1. 初始化哈希桶数组(懒加载)
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    // 2. 计算索引,处理哈希冲突
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {
        Node<K,V> e; K k;
        // 3. 键已存在,替换值
        if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        // 4. 键不存在,遍历链表/树
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    // 5. 链表转红黑树
                    if (binCount >= TREEIFY_THRESHOLD - 1)
                        treeifyBin(tab, hash);
                    break;
                }
                if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        if (e != null) {
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    // 6. 元素数量超过阈值,扩容
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}
3.2 get 方法
public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    // 1. 计算索引
    if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) {
        // 2. 检查头节点
        if (first.hash == hash && ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        // 3. 遍历链表/树
        if ((e = first.next) != null) {
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(this, tab, hash, key);
            do {
                if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}
3.3 resize 方法
final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    // 1. 计算新容量和阈值
    if (oldCap > 0) {
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        newCap = oldCap << 1;
        newThr = oldThr << 1;
    } else if (oldThr > 0)
        newCap = oldThr;
    else {
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    // 2. 创建新哈希桶数组
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    // 3. 迁移数据
    if (oldTab != null) {
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else {
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        } else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}
四、关键优化技术
4.1 哈希计算优化
  • 扰动函数:通过 hash = key.hashCode() ^ (hashCode >>> 16) 减少哈希冲突。
  • 位运算:使用 (n - 1) & hash 计算索引,替代取模运算,提升性能。
4.2 扩容优化
  • 增量迁移:扩容时仅迁移部分数据,避免全量复制。
  • 树化/去树化:根据链表长度动态转换数据结构。
4.3 内存局部性
  • 链表顺序:新节点插入到链表尾部,提升缓存命中率。
  • 红黑树平衡:保持树的高度平衡,减少遍历时间。
五、线程不安全性
5.1 典型问题
  • 数据覆盖:多线程 put 时,可能导致键值对丢失。
  • 死循环:扩容时多个线程操作链表,可能形成环形链表。
5.2 示例代码
// 线程不安全示例
Map<String, String> map = new HashMap<>();
ExecutorService executor = Executors.newFixedThreadPool(2);
executor.submit(() -> {
    for (int i = 0; i < 10000; i++) {
        map.put("key" + i, "value" + i);
    }
});
executor.submit(() -> {
    for (int i = 0; i < 10000; i++) {
        map.put("key" + i, "value" + i);
    }
});
executor.shutdown();
// 最终 map.size() 可能小于 10000
六、总结

JDK 8 的 HashMap 通过哈希表、链表、红黑树的复合结构,实现了高效的键值对存取。其源码实现深刻体现了数据结构与算法的精髓:

  1. 哈希冲突解决:通过链表和红黑树动态转换,平衡时间和空间复杂度。
  2. 动态扩容:容量翻倍策略减少频繁扩容开销。
  3. 内存局部性:优化数据布局,提升缓存命中率。

实际开发中,建议优先使用 HashMap,但在多线程场景下需改用 ConcurrentHashMap 或通过 Collections.synchronizedMap 包装。深入理解其源码,有助于设计高性能的 Java 应用程序。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值