本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。
原文链接:什么是 COCO 数据集?
COCO 数据集
MS COCO 数据集是 Microsoft 发布的大规模对象检测、图像分割和字幕数据集。机器学习和计算机视觉工程师广泛使用 COCO 数据集进行各种计算机视觉项目。
理解视觉场景是计算机视觉的主要目标;它涉及识别存在的对象、在 2D 和 3D 中定位对象、确定对象的属性以及描述对象之间的关系。因此,可以使用数据集训练对象检测和对象分类算法。
什么是COCO?
COCO 代表 Common Objects in Context 数据集,因为创建图像数据集的目的是为了推进图像识别。COCO 数据集包含用于计算机视觉的具有挑战性的高质量视觉数据集,其中大部分是最先进的神经网络。
例如,COCO 通常用于对算法进行基准测试,以比较实时对象检测的性能。COCO 数据集的格式由高级神经网络库自动解释。
COCO 数据集的特点
-
-
带有详细实例注释的对象分段
-
情境中的识别
-
超像素内容分割
-
在总共 330'000 张图像中,有超过 200'000 张图像被标记
-
1.5 Mio 对象实例
-
80 个对象类别,即“COCO 类”,其中包括可以轻松标记单个实例的“事物”(person、car、chair 等)。
<
-