
CV-分割专栏
文章平均质量分 92
关于图像的分割专栏
双木的木
种一棵树最好的时间是十年前,其次是现在。
展开
-
码科智能 | 视频分割也行了!Meta“分割一切AI”二代SAM2:模型代码、权重以及数据集通通开源!
Meta“分割一切AI”二代SAM2的诞生代表了领域内的一次重大进步。相较于上一代,它的能力从图像分割拓展到视频分割。为静态图像和动态视频内容提供实时、可提示的对象分割,将图像和视频分割功能统一到一个强大的系统中。原创 2025-05-18 15:02:33 · 378 阅读 · 0 评论 -
码科智能 | 细节超越SAM2!商汤开源视频抠图新标杆:MatAnyone一次指定全程追踪,发丝级还原
当SAM2引爆图像分割革命,MatAnyone这种设置既兼顾用户可控性,又具有更强的实用性和鲁棒性,正在视频抠图领域竖起新的技术标杆。原创 2025-04-22 17:07:52 · 671 阅读 · 0 评论 -
码科智能 | 字节又整活!将 SAM2 与 LLaVA 结合起来,第一个在视频级别支持对话、指称分割及理解的统一模型
Sa2VA 模型通过结合基础视频分割模型 SAM-2 和高级视觉语言模型 LLaVA,将文本、图像和视频统一到共享的 LLM 标记空间中。这种架构设计使得 Sa2VA 能够在最少指令微调的情况下,执行多种任务,包括图像对话、视频对话、图像指称分割、视频指称分割和基于单次指令调整的字幕生成。原创 2025-03-27 22:32:22 · 905 阅读 · 0 评论 -
极市平台 | OpenVINO部署Mask-RCNN实例分割网络
OpenVINO是英特尔推出的一款全面的工具套件,用于快速部署应用和解决方案,支持计算机视觉的CNN网络结构超过150余种。本文展示了用OpenVINO部署Mask-RCNN实例分割网络的详细过程及代码演示。原创 2025-01-15 14:20:39 · 881 阅读 · 0 评论 -
OpenCV与AI深度学习 | 基于PyTorch语义分割实现洪水识别(数据集 + 源码)
为了尽我们的微薄之力,我们将在本文中使用 PyTorch训练一个用于洪水识别的语义分割模型。有趣的是,我们在 epoch 33 上获得了最小的验证损失 0.222,而最高的像素准确度出现在 epoch 3。也许我们可以用更低的初始学习率进行训练,以缓解这种不稳定的训练。为了获得更好的性能,我们将使用预训练的权重。其中包括用于保存最佳模型的类、用于保存准确率和损失图的函数,以及用于在图像上叠加分割图的函数。但我们可以通过更多的训练数据和更好的训练技术来纠正这个问题。这将返回标记像素的总数和正确分类的像素。原创 2025-01-14 19:42:53 · 1220 阅读 · 0 评论 -
集智书童 | UniMatch V2 推进半监督语义分割极限,以更低训练成本实现更优的语义分割结果-建议收藏!
半监督语义分割(Semi-supervised semantic segmentation, SSS)的目标是利用便宜的无标签图像学习丰富的视觉知识,以提高语义分割能力。在最近的的工作中,UniMatch [1]极大地改进了其先驱,通过放大弱到强的一致性正则化实践。后续的工作通常遵循类似的工作流程,并提出各种精致的设计。原创 2024-11-06 17:57:34 · 1588 阅读 · 0 评论 -
OpenCV与AI深度学习 | 实战 | 使用YoloV8实例分割识别猪的姿态(含数据集)
在本文中,我将介绍如何使用YoloV8在猪的自定义数据集上进行实例分割,以识别和跟踪它们的不同姿态。原创 2024-08-12 21:12:34 · 1590 阅读 · 0 评论 -
OpenCV与AI深度学习 | SAM2(Segment Anything Model 2)新一代分割一切大模型介绍与使用(步骤 + 代码)
Segment Anything Model 2(SAM 2)是由Meta公司发布的一个先进的图像和视频分割模型。它是Segment Anything Model(SAM)的升级版本,SAM是Meta的FAIR实验室发布的一款用于图像分割的基础模型,能够在给定提示的情况下生成高质量的对象掩模。原创 2024-08-07 17:41:05 · 4647 阅读 · 0 评论 -
AIGC先锋科技 | 利用增强现实与改进 YOLOv5 检测 !
随着现代社会的不断发展,全球大多数国家的交通量持续增加,导致路面损坏率上升。因此,实时且高度准确的路面损坏检测与维护已成为当前的需求。在本文中,提出了一种基于CycleGAN和改进的YOLOv5算法的增强型路面损坏检测方法。作者选取了7644张自行收集的路面损坏样本图像作为初始数据集,并利用CycleGAN对其进行增强。原创 2024-07-17 17:58:18 · 930 阅读 · 0 评论 -
计算机视觉研究院 | CVPR:零样本通用分割框架(附源代码)
这种零样本分割能力依赖于语义空间中的类间关系,将从可见类别中学习到的视觉知识转移到不可见类别中。因此,希望很好地桥接语义视觉空间,并将语义关系应用于视觉特征学习。研究者引入了一个生成模型来合成不可见类别的特征,该模型连接了语义和视觉空间,并解决了缺乏不可见训练数据的问题。此外,为了缓解语义空间和视觉空间之间的领域差距。首先,通过学习primitives增强vanilla generator,每个都包含与类别相关的细粒度属性,并通过选择性地组装这些指令来合成看不见的特征。原创 2024-07-16 17:30:16 · 980 阅读 · 0 评论 -
计算机视觉研究院 | One-Shot都嫌多,Zero-Shot实例样本分割
实例分割(Instance Segmentation)是视觉经典四个任务中相对最难的一个,它既具备语义分割(Semantic Segmentation)的特点,需要做到像素层面上的分类,也具备目标检测(Object Detection)的一部分特点,即需要定位出不同实例,即使它们是同一种类。因此,实例分割的研究长期以来都有着两条线,分别是自下而上的基于语义分割的方法和自上而下的基于检测的方法,这两种方法都属于两阶段的方法,下面将分别简单介绍。原创 2024-07-06 20:55:05 · 1367 阅读 · 0 评论 -
OpenCV与AI深度学习 | 实战 | 基于YOLOv9+SAM实现动态目标检测和分割(步骤 + 代码)
在本文中,我们使用YOLOv9+SAM在RF100 Construction-Safety-2 数据集上实现自定义对象检测模型。这种集成不仅提高了在不同图像中检测和分割对象的准确性和粒度,而且还扩大了应用范围——从增强自动驾驶系统到改进医学成像中的诊断过程。通过利用 YOLOv9 的高效检测功能和 SAM 以零样本方式分割对象的能力,这种强大的组合最大限度地减少了对大量再训练或数据注释的需求,使其成为一种多功能且可扩展的解决方案。原创 2024-04-17 19:05:35 · 2505 阅读 · 2 评论 -
CV技术指南 | 中科院又一创举 SecViT | 多功能视觉 Backbone 网络,图像分类、目标检测、实例分割和语义分割都性能起飞!
视觉 Transformer (ViT)因其卓越的关系建模能力而受到关注。然而,其全局注意力机制的二次复杂度带来了相当大的计算负担。常见的解决方法是空间地分组 Token 以进行自注意力,减少计算需求。然而,这种策略忽略了 Token 中的语义信息,可能将语义相关的 Token 分散到不同的组中,从而损害了用于建模 Token 间依赖的自注意力的有效性。基于这些洞察,作者引入了一种快速且均衡的聚类方法,名为语义均衡聚类(SEC)。SEC以一种高效、直接的方式根据 Token 的全局语义相关性对 Token原创 2024-06-02 18:05:14 · 1413 阅读 · 0 评论 -
OpenCV与AI深度学习 | 实战—使用YOLOv8图像分割实现路面坑洞检测(步骤 + 代码)
现实生活中路面坑洞对车辆和驾驶员安全来说存在巨大隐患,本文将介绍如何使用YoloV8图像分割技术来检测路面坑洞,从而提示驾驶员注意避让,尽可能保证安全。原创 2024-03-06 17:33:45 · 1589 阅读 · 2 评论 -
DeepDriving | 基于YOLOv8分割模型实现垃圾识别
TACO是一个包含在不同环境下(室内、树林、道路和海滩)拍摄的垃圾图像数据集,这些图像中的垃圾对象被精细地用方框和多边形进行了标注,标注信息采用与COCO数据集一样的格式,总共有60个类别,不过有的类别标注得很少甚至没有。下图是TACO数据集中的一些标注示例:如果需要下载数据集,先执行下面的命令拉取官方的GitHub然后用Python如果下载过程中被中断了,只需重新执行download脚本即可继续下载。原创 2024-06-04 17:31:15 · 1090 阅读 · 0 评论 -
OpenCV与AI深度学习 | 如何使用YOLOv9分割图像中的对象
在我们之前的文章中,我们使用 YOLOv8 探索了令人兴奋的对象分割世界。分割使计算机视觉比简单的对象检测更进一步。检测可以识别图像中对象的存在和位置,而分割则更进一步,仔细勾勒出每个对象的确切边界。这使得人们能够更细致地了解视觉场景,其应用范围从自动驾驶汽车到医学图像分析。今天,我们将在此基础上研究 YOLOv9 在分割任务方面的潜力。YOLOv9 是 You Only Look Once (YOLO) 系列目标检测算法的最新迭代,有望在速度和准确性方面取得显著进步。让我们深入研究如何利用 Y原创 2024-04-25 20:05:30 · 1574 阅读 · 0 评论 -
极市平台 | 语义分割方向开源数据集资源汇总
本文收集和整理了一些语义分割相关的开源数据集,附下载链接,希望能给大家的学习带来帮助。原创 2024-04-19 17:37:44 · 976 阅读 · 0 评论