如何快速撰写/总结国内外研究现状?

在撰写毕业论文时,如何高效地总结国内外研究现状?作者分享了宝贵经验:首先关注论文的结论部分,了解研究目标和成果;接着借助摘要加深理解;同时,利用图表来辅助把握研究框架和实验细节。通过这三个关键点,能够迅速构建出研究现状的概览。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如何快速撰写/总结国内外研究现状???

研三快毕业了,写毕业论文时总结了一下自己是怎么写国内外研究现状的。作者:爱学习的大白菜(blog.csdn.net/csdnliwenqi)


【经验】

​ 总结国内外研究现状时,可以先看所参考文献的 结论(conclusion) 部分。作者一般在论文的结论部分给出了整篇论文要干什么,得到了什么结果。若没看明白, 摘要(Abstract) 部分可以进行补充。同时文献中的 图和表 也能帮助作者快速理解作者的思路。(图和表一般是作者提出的框架呀、流程呀、实验参数呀、结果呀什么的)。因此找到这3个点能帮助作者快速总结出国内外研究现状。

【关键步骤】:

  1. 主要看 ”结论“。
  2. 摘要”帮理解。
  3. 图表”来丰富。
### 基于深度学习的人脸识别国内外研究进展综述 #### 国际研究现状 在国际范围内,基于深度学习的人脸识别技术已经取得了显著的进步。自2015年起,Google发布的Facenet论文标志着人脸识别和验证系统的融合进入新的阶段[^3]。该系统引入了triplet loss机制,使得模型能够有效地将人脸图像映射至欧几里得空间中,其中距离度量反映了不同个体之间的相似程度[^4]。 此外,许多顶尖科研机构和技术公司持续推动着这一领域的边界扩展。例如,Facebook AI Research (FAIR),微软亚洲研究院(MSRA)等都在不断探索更高效的特征提取方法以及更加鲁棒的学习策略来提升识别精度并降低误报率。 #### 国内研究现状 在国内方面,上海大学与京东AI研究院共同撰写的《端到端深层面部识别要素综述》指出近年来中国学者也在积极投身于此项前沿课题之中[^1]。特别是针对大规模数据集上的高效训练算法设计、跨年龄变化下的稳定表现优化等问题展开了深入探讨,并取得了一系列重要成果。 值得注意的是,DeepID系列工作作为最早一批尝试利用metric learning思想构建深层网络结构来进行面部表征的例子之一,在当时具有开创性的意义[^2]。它不仅促进了后续众多相关工作的开展,也为后来者提供了宝贵的经验借鉴。 ```python import torch.nn as nn class TripletLoss(nn.Module): def __init__(self, margin=1.0): super(TripletLoss, self).__init__() self.margin = margin def forward(self, anchor, positive, negative): distance_positive = (anchor - positive).pow(2).sum(1) distance_negative = (anchor - negative).pow(2).sum(1) losses = F.relu(distance_positive - distance_negative + self.margin) return losses.mean() ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值