使用python将视频流保存为MP4文件,当视频流断流时可以自动重连

本文介绍了一个Python脚本,该脚本从RTSP流中捕获视频,并将其转换为MP4格式。脚本能够自动处理视频流中断的情况并进行重连,确保视频录制不中断。同时,该脚本还能翻转视频帧并实时展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 rtsp_mp4.py文件内容

import cv2
import json


def rtsp_mp4():
    with open('demo.json', 'r', encoding='utf-8') as fp:
        opt = json.load(fp)
        
    # 获取视频流地址
    cap = cv2.VideoCapture(opt["source"])
    # 帧数
    fps = cap.get(cv2.CAP_PROP_FPS)
    # 宽高
    width, height = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))  
    size = (width, height)
    # 定义视频编码方式,保存为mp4文件
    fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v') 
    out = cv2.VideoWriter()
    # 视频存储对象,视频格式,帧数,视频大小
    out.open(opt["video_name"], fourcc, fps, size)
    while True:
        # 获取每一帧
        ref, frame = cap.read()  
        # 若没有帧返回,则重新刷新rtsp视频流
        while not(ref):
            cap = cv2.VideoCapture(opt["source"])
            # 获取每一帧
            ref, frame = cap.read()  
            continue
        # 翻转
        frame = cv2.flip(frame, 1)
        # 保存每一帧合并成视频
        out.write(frame)
        # 显示视频界面
        cv2.imshow("frame", frame)  
        # 按esc退出检测视频
        key = cv2.waitKey(1)
        if key == 27:
            break
        # 按Q退出
        # if cv2.waitKey(25) & 0xFF == ord('Q'):
        #     break
    # 释放
    cap.release()  
    out.release()
    cv2.destroyAllWindows()

rtsp_mp4()

json文件内容

{
	"source": "rtsp://127.0.0.1/live/stream1_renshouyingji",
	"video_name": "demo.mp4"
}

 视频断流后会自动重连,保存的视频会拼接在之前的视频后面

<think>好的,用户想了解如何使用Python处理RTSP视频流,我需要整理相关的方法和库。首先,我得回忆下常见的Python库,比如OpenCV,它应该是比较常用的,用户可能知道一些,但需要详细说明。然后GStreamer也是一个选项,可能更灵活但复杂。另外还有FFmpeg和VLC的Python绑定,这些可能适合不同场景。 接下来,我需要查看用户提供的引用资料。引用1提到OpenCV读取RTSP流的问题,引用2和3分别提到了GStreamer-Python和可能的问题,引用4中的代码示例用了OpenCV但存在异常。这说明用户可能遇到了稳定性问题,需要解决方案。 我应该先介绍OpenCV的方法,因为最简单,但也要指出其潜在问题,比如断流处理。然后到GStreamer,说明如何配置管道,可能更可靠。接着是FFmpeg和PyAV,适合更底层的处理。VLC绑定可能适合需要播放的情况。然后给出示例代码,帮助用户快速上手。 还要注意用户可能遇到的常见问题,比如网络延迟、认证、断流连,这些需要提供解决建议。比如使用队列、异步处理,或者调整OpenCV的参数。同,根据引用4中的代码,用户可能在使用异步出现问题,需要提醒他们正确释放资源和错误处理。 最后生成相关问题,覆盖库的选择、延迟优化、断流处理、多线程和认证处理,这样用户可以有进一步探索的方向。要确保回答结构清晰,分点说明每个方法,并给出代码示例,同注意事项部分帮助用户避免常见坑。</think>### Python处理RTSP视频流的库与方法 #### 一、核心工具库 1. **OpenCV**(最常用) - 基础实现仅需3行代码,但需注意断流连机制 - 示例代码: ```python import cv2 cap = cv2.VideoCapture("rtsp://username:password@ip:port/path") while cap.isOpened(): ret, frame = cap.read() if not ret: break cv2.imshow('RTSP', frame) if cv2.waitKey(1) == 27: break cap.release() ``` - 优化建议:添加`cap.set(cv2.CAP_PROP_BUFFERSIZE, 1)`减少延迟[^4] 2. **GStreamer-Python**(工业级方案) - 支持复杂媒体处理管道搭建 - 基础管道配置示例: ```python import gi gi.require_version('Gst', '1.0') from gi.repository import Gst, GLib pipeline = Gst.parse_launch('rtspsrc location=rtsp://your_stream ! decodebin ! videoconvert ! appsink emit-signals=True') ``` 3. **FFmpeg-Python**(底层控制) - 适合需要精确控制编解码的场景 - 示例使用subprocess调用: ```python import subprocess ffmpeg_cmd = [ 'ffmpeg', '-i', 'rtsp://your_stream', '-f', 'image2pipe', '-pix_fmt', 'rgb24', '-vcodec', 'rawvideo', '-' ] pipe = subprocess.Popen(ffmpeg_cmd, stdout=subprocess.PIPE, bufsize=10**8) ``` #### 二、高级处理方案 1. **异步处理框架** - 使用asyncio解决I/O阻塞问题(参考引用4的队列机制) - 优化建议:设置最大试次数和超检测 2. **多线程架构** - 分离视频采集、处理、显示线程 - 推荐使用`queue.Queue`实现线程间通信 3. **硬件加速方案** - NVIDIA Jetson平台可使用`gstreamer-nv`插件 - Intel平台推荐使用VAAPI加速: ```python pipeline = 'rtspsrc ! rtph264depay ! vaapih264dec ! videoconvert ! appsink' ``` #### 三、常见问题解决方案 1. **断流连** ```python def reset_capture(): global cap cap.release() cap = cv2.VideoCapture(url) return cap.isOpened() ``` 2. **认证处理** - URL标准格式:`rtsp://username:password@ip:port/path` 3. **低延迟优化** ```python cap.set(cv2.CAP_PROP_FPS, 25) cap.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'H264')) ``` #### 四、性能对比表 | 方案 | 延迟 | CPU占用 | 稳定性 | 开发难度 | |--------------|-------|---------|--------|----------| | OpenCV | 中 | 低 | 一般 | ★★☆☆☆ | | GStreamer | 低 | 中 | 高 | ★★★★☆ | | FFmpeg | 高 | 高 | 高 | ★★★★★ | | VLC-Python | 中高 | 中 | 高 | ★★★☆☆ |
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值