
AI大模型基础
文章平均质量分 91
本专栏专注于AI大模型基础的学习,内容涵盖AI大模型的发展历程、核心概念、关键技术等多个方面,同时专栏还将提供大量的实际案例、练习和总结,帮助你巩固所学知识,提升实践能力。
数据知道
IT技术博主,博主会持续更新专栏文章,欢迎关注和订阅文章博客,欢迎私信和博主交流技术,欢迎关注公众号:数据知道的成长之路。如有需要请站内私信或者联系VX名片(ID:data_know)
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
什么是生成式人工智能?
生成式人工智能(Generative AI) 是一类能够自主创造新内容(如文本、图像、音频、视频、代码等)的AI技术,通过学习海量数据中的规律,模仿人类的创造力生成原创内容。其核心特点包括创造性、多模态和交互性,广泛应用于文本生成(如ChatGPT)、图像生成(如DALL·E)、音频/视频生成等领域。原创 2025-05-29 12:45:24 · 4410 阅读 · 2 评论 -
Gradio 详解:快速构建机器学习演示应用的工具
简单易用:几行代码即可创建交互式界面多种输入/输出支持:文本、图像、音频、视频、数据表格等实时交互:用户输入后立即得到模型输出可嵌入:可集成到 Jupyter Notebook 或独立部署为 Web 应用共享功能:通过 Gradio 托管服务轻松分享你的应用主题定制BaseDefaultGlassMonochromeSoft自定义CSS# 你的组件。原创 2025-04-28 11:33:22 · 6020 阅读 · 0 评论 -
【Pytorch】一文掌握 Pytorch 的详细用法(Pytorch 备忘速查)
Pytorch 官网Pytorch 官方备忘清单。原创 2025-04-27 17:57:20 · 5231 阅读 · 0 评论 -
SnowNLP 使用大全
SnowNLP是一个 Python 中文自然语言处理(NLP)库,主要用于:• 中文分词• 情感分析• 文本分类• 关键词提取• 拼音转换特点• 纯 Python 实现(无需依赖其他 NLP 工具)• 适用于简单中文文本处理• 训练模型可自定义官方资源• GitHub:• 文档:text = "自然语言处理是人工智能的重要分支..." # 长文本print(s.summary(2)) # 返回最重要的2个句子训练情感分析模型准备标记好的数据集(格式:每行。原创 2025-04-06 10:07:00 · 6039 阅读 · 0 评论 -
【大模型】如何有效根据提示词使用AI大模型(提示词备忘清单)
ChatGPT 是 OpenAI 于 2022 年发布的 AI 聊天机器人,基于 GPT-3.5、GPT-4 等模型,支持自动生成文本、问答、总结和编程等多种语言处理任务。原创 2025-03-30 07:43:43 · 5997 阅读 · 1 评论 -
机器学习算法:一文掌握 最小二乘法 的详细用法(5个案例可直接运行)
最小二乘法(Least Squares Method)是一种用于拟合数据的经典回归分析方法,广泛应用于线性回归、非线性回归和统计学中。其核心思想是通过最小化观测数据与模型预测值之间的误差平方和,找到最优的模型参数。最小二乘法的目标是找到一组模型参数,使得模型预测值与实际观测值之间的误差平方和最小。对于线性模型,最小二乘法可以用于估计回归系数。最小二乘法公式是一个数学的公式,在数学上称为曲线拟合,不仅仅包括线性回归方程,还包括矩阵的最小二乘法。a=y-bx。原创 2025-03-20 11:58:08 · 6854 阅读 · 0 评论 -
机器学习算法:一文掌握 K近邻算法 的详细用法(2个案例可直接运行)
KNN算法作为一种简单而有效的分类和回归方法,在许多实际问题中都有广泛的应用。其核心思想是通过测量数据点之间的距离来进行预测,具有易理解、无需训练过程等优点。然而,KNN也存在计算量大、对特征缩放敏感等缺点。在实际应用中,合理选择K值、进行特征预处理以及利用高效的实现库(如Scikit-learn)可以充分发挥KNN的优势。原创 2025-03-16 10:09:46 · 6367 阅读 · 0 评论 -
一文掌握 RAG 的原理和对应的2个案例
RAG 技术通过结合检索和生成,显著提升了大模型的知识获取和生成能力。它在问答系统、文档生成和对话系统等场景中具有广泛应用。未来,随着检索算法和生成模型的不断改进,RAG 将在更多领域发挥重要作用。原创 2025-03-14 20:28:09 · 6902 阅读 · 0 评论 -
万字讲清大模型的发展,按时间排序(1950年到2025年)
大模型(Large Language Models, LLMs) 的发展是人工智能领域的重要里程碑。以下是按时间排序的大模型发展关键节点。原创 2025-03-14 17:56:49 · 8084 阅读 · 1 评论 -
用 Python 检测两个文本文件的相似性的几种方法
如果需要快速计算短文本的相似性,可以使用 Levenshtein 距离 或 Jaccard 相似度。如果需要处理长文本并考虑词频信息,可以使用 余弦相似度 或 TF-IDF 相似度。如果需要考虑语义信息,可以使用 Word2Vec 或 BERT。原创 2025-03-13 19:54:18 · 7163 阅读 · 0 评论 -
一文掌握计算机视觉基础(程序员都应该了解的知识点)
对计算机视觉的第一印象:用计算机代替人类的眼睛,模仿人类视觉去完成各项任务。计算机视觉(Computer Vision)是一门研究如何使机器“看”的科学,也可以看作是研究如何使人工系统从图像或多维数据中“感知”的科学。终极目标:计算机视觉成为机器认知世界的基础,终极目的是使得计算机能够像人一样“看懂世界”。计算机视觉技术相较于人类在图像处理方面上,实现超人的准确性;如:图片颜色、细节敏感度;在细微变化识别方面上,性能远胜于人类;如:医疗图像分析;在计算能力方面上,计算速度与精确性完胜人类;原创 2024-10-22 10:56:41 · 7261 阅读 · 0 评论 -
谷歌JAX快速入门笔记详解和案例
JAX最初由谷歌大脑团队的 Matt Johnson、Roy Frostig、Dougal Maclaurin 和 Chris Leary 等人发起,借助 Autograd 的更新版本,并且结合了 XLA,可对 Python 程序与 NumPy 运算执行自动微分,支持循环、分支、递归、闭包函数求导,也可以求三阶导数;依赖于 XLA,JAX 可以在 GPU 和 TPU 上编译和运行 NumPy 程序;通过 grad,可以支持自动模式反向传播和正向传播,且二者可以任意组合成任何顺序。原创 2022-09-19 20:02:59 · 31727 阅读 · 5 评论 -
21句话简述机器学习
1.机器学习有四种用途:分类、聚类、回归和降维。监督学习:分类和回归无监督学习:聚类和降维更严格一点,机器学习的目的只有三个:分类、聚类和回归,降维不过是达成目标的手段之一。2.分类和聚类都是对个体样本归类,看起来很相似,实则相去甚远——前者属于有监督的学习,后者属于无监督的学习。分类是基于经验的,而经验来自过往的数据,这意味着分类需要训练;聚类则是基于当前全部样本的特征,不依赖经验,自然也就无需训练。举个例子:让你从一堆水果中挑出苹果、橘子和香蕉,这是分类;让你将画在纸上的若干个图案分组,分组规原创 2021-10-18 18:16:33 · 32019 阅读 · 0 评论