Docker Desktop的使用方法

一、Docker Desktop 简介

Docker Desktop 是 Docker 官方为开发者提供的桌面应用程序,支持在 Windows 和 macOS 上轻松构建、运行和共享容器化应用程序。它集成了 Docker 引擎、Docker CLI 客户端以及 Docker Compose 等工具,方便您在本地开发和测试。

二、Docker Desktop 的安装

1. 系统要求

  • Windows
    • Windows 10 64位:专业版、企业版或教育版(版本 1903 或更高)。
    • 启用了 Hyper-V容器 功能。
  • macOS
    • macOS 10.15 及以上版本。

2. 下载 Docker Desktop

3. 安装步骤

Windows:
  1. 双击下载的 Docker Desktop Installer.exe 文件开始安装。
  2. 在安装向导中,勾选 Install required Windows components for WSL 2,以便安装 WSL 2 后端(推荐)。
  3. 点击 Install,等待安装完成。
  4. 安装完成后,可能需要重启计算机。
macOS:
  1. 打开下载的 Docker.dmg 文件。
  2. Docker.app 拖拽到 Applications 文件夹中。
  3. Applications 中找到 Docker.app,双击运行。
  4. 按照提示完成安装。

三、初次运行 Docker Desktop

  1. 启动 Docker Desktop

    • 双击桌面上的 Docker 图标,启动 Docker Desktop。
    • 首次运行可能需要一些初始化配置,耐心等待。
  2. 完成设置

    • 当 Docker 图标变为稳定的 鲸鱼图标 时,表示 Docker 已经启动并正常运行。
    • 在 Windows 上,您可以在任务栏右下角看到 Docker 图标;在 macOS 上,可以在菜单栏看到。

四、验证 Docker 是否安装成功

打开 命令提示符(CMD)PowerShell终端(Terminal),输入以下命令:

docker version

如果显示了 Docker 的版本信息,说明安装成功。

五、运行您的第一个容器

1. 运行 Hello World 容器

docker run hello-world
  • 该命令会从 Docker Hub 上拉取 hello-world 镜像,并在容器中运行。
  • 如果成功,会在终端中看到一段欢迎信息。

2. 理解命令

  • docker run:运行一个新的容器。
  • hello-world:要运行的镜像名称。

六、使用 Docker 命令行<

### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练和强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力和执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

由数入道

滴水助江海,心灯渡万世。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值