
提示词工程
文章平均质量分 88
探索如何通过精心设计的提示词,唤醒大语言模型的潜能,实现高效、精准且富有创意的AI交互。无论你是技术开发者、内容创作者,还是AI技术爱好者,这里将为你提供系统性方法论、实战技巧与前沿案例,助你掌握与AI对话的核心艺术。
由数入道
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
上下文工程的系统性优化:从组件到整合架构
一家顶级律师事务所正在为他们的客户——一家科技公司“Innovatech”,处理一桩复杂的专利侵权诉讼。这种整合的、系统性的方法,才是上下文工程在解决真实世界复杂问题时,释放其全部潜力的关键所在。这个技术栈的目标是模拟并增强人类专家的工作流:从信息收集、分析推理到最终的决策与执行。通过这个统一的、分层的架构,我们看到上下文工程的五个组件不再是孤岛。这一层赋予AI行动能力和思考的连贯性,使其能够参与到动态的、多步骤的工作流程中。专业的上下文工程并非是五个独立技术的简单堆砌,而是一个精心设计的、分层的。原创 2025-07-22 14:20:17 · 51 阅读 · 0 评论 -
上下文工程的“智能涌现”四象限定位模型
—那颗蕴含巨大潜力的恒星。而所有的上下文工程技术,都是我们为了引导和释放这颗恒星的光和热(即智能)而创造的行星系统、航行工具和探索策略。这个编排器,正是**高级Agent(如ReAct, Plan-and-Solve)**的核心。如果说四个象限是你的四支特种部队,那么在现实世界的复杂应用中,你还需要一个**“总指挥部”这张地图由两个核心的战略维度构成,它们共同定义了四个截然不同但又相互关联的技术象限。想象一下,我们不是在看一棵树,而是在绘制一张星图。编排器 (Orchestrator)**。原创 2025-07-16 23:56:38 · 119 阅读 · 0 评论 -
提示词优化——分析性思维导师
分析性思维:一种以逻辑推理和批判性思考为基础的解决问题的方法。导师:一个专业的指导者,能够提供知识和技能上的帮助。原创 2025-07-08 23:58:00 · 45 阅读 · 0 评论 -
构建智能的三角
这不仅关乎技术,更关乎。原创 2025-06-19 08:07:56 · 54 阅读 · 0 评论 -
提示工程高级协议框架深度分析
摘要: 大型语言模型(LLM)的潜力释放依赖于高级提示工程,其核心是通过结构化协议优化输入提示,以解决LLM的幻觉、偏见和复杂任务处理等挑战。本文提出高级提示协议框架,包括代理式提示、自校正、伦理对齐等模块,旨在系统化引导LLM的推理路径和注意力机制。以代理式提示为例,通过角色定义、任务分解、工具调用等子组件,LLM可模拟自主代理行为,显著提升复杂任务(如自动化内容创作、代码调试)的解决能力。该框架通过精细化控制LLM的涌现能力,实现高效、可靠的多模态交互,为AI应用提供更安全、鲁棒的解决方案。原创 2025-06-18 18:33:18 · 540 阅读 · 0 评论 -
提示词高级优化协议框架
优化策略包括:战略性模型选择(根据任务需求选择合适规模的模型)、提示词优化(清晰、简洁、明确,消除冗余措辞)、利用RAG(优化检索器、分块大小/重叠、高质量知识库)、智能工具利用(委托确定性任务)以及代理转移(对简单任务使用更便宜的模型,将大型提示词分解给不同代理处理) 19。鲁棒性与脆性缓解框架旨在通过综合测试、迭代优化、清晰灵活的语言、回退机制、以用户为中心的设计、上下文丰富、模块化和定期审计等策略,确保模型在不同输入、上下文和用户类型下保持一致可靠的性能 6。指定输出结构和期望行为是关键 1。原创 2025-06-18 06:13:01 · 34 阅读 · 0 评论 -
提示词工程中常见协议框架应用实例
《智能系统核心协议体系》摘要:本文提出了13项AI核心技术协议,涵盖诊断推理、信息处理、交互验证等关键领域。GDC协议结合神经符号系统实现医疗诊断,IGUP通过变分自编码器处理数据缺失。CISC采用双通道机制确保内容合规,DCP利用区块链保障数据溯源。CPC和ETM分别管理上下文连贯性与情感适配,MCCA实现跨文化转换。SEC提供道德约束,CIP解析复杂指令,P&C支持个性化服务。RDR确保实时响应,TDSS进行任务分解,FLOO建立持续优化机制。这套协议体系通过Python代码实现,展现了AI系统原创 2025-06-17 23:55:01 · 138 阅读 · 0 评论 -
基于根茎式思维深化后的提示词设计案例
它不问“是什么”,而是问“如何抵抗”。“自身免疫病”的比喻极具穿透力,而“肠道菌群”的引入则是神来之笔,它从生物学内部找到了一个完美的解构工具,用以对抗简单化的“纯净/排外”逻辑,为构建更复杂的共同体模型提供了坚实的理论基石。“Bug/Exploit”的引入非常精妙,它将所有非正式、潜规则的行为统一到了一个游戏化的框架下进行分析,从而跳出了传统的道德批判,进入了系统动力学的层面。“涂鸦”作为野卡,是一个完美的切入点,它本身就是一种非官方的、自发的、充满符号意义的城市文本,完美契合了“潜意识泄露”的主题。原创 2025-06-15 16:29:49 · 82 阅读 · 0 评论 -
Text GRAD使用场景的案例分析
一位生物医学研究员完成了一项关于新型靶向药的临床前研究,需要撰写一篇摘要(Abstract),投稿至《Nature》或《Cell》等级别的顶级期刊。摘要必须在极短的篇幅内,清晰、有力地呈现研究的背景、方法、关键发现和意义。初始生成 (Output_0基于Prompt“总结我们关于药物X治疗癌症Y的研究,数据表明它能抑制肿瘤生长”生成。“本研究旨在评估新型化合物X对Y癌症模型的效果。我们通过体外细胞实验和体内小鼠模型,对化合物X进行了测试。结果显示,化合物X能显著抑制细胞增殖并缩小肿瘤体积。原创 2025-06-10 23:46:57 · 489 阅读 · 0 评论 -
将LLM从“工具”锻造成“战略伙伴”的进化之路——对《文案撰写专家》提示词增益优化的实现过程
文案:用于传达信息、情感或观点的文字内容。创意性:文案中新颖、独特的思想或表达方式。策略性:文案撰写时考虑目标受众和预期效果的计划性思维。原创 2025-06-10 23:15:33 · 188 阅读 · 0 评论 -
DSPy提示词编程技术简要介绍
DSPy:编程替代提示工程的AI开发新范式 DSPy是由斯坦福团队开发的新型AI编程框架,其核心思想是通过编程范式替代传统手工编写提示词的方式。它将任务逻辑与文本表达解耦,使开发者专注于系统设计而非字符串调优。DSPy采用签名定义输入输出行为,构建模块化组件,并通过编译优化自动生成高质量提示词或微调模型权重。 该框架的主要优势在于: 1)标准化了从数据准备到评估的系统性工作流程; 2)具备自适应优化能力,能根据任务变化自动调整; 3)显著提升模型性能,较小模型经优化后可媲美GPT-4。 典型应用包括多跳RA原创 2025-06-09 02:23:04 · 160 阅读 · 0 评论 -
对《解决方案文档编写专家》的提示词做功能优化
简要介绍解决方案的主要目标、核心功能和所提供的价值。[**以简洁而有力的语言,概述本解决方案的核心价值、愿景与如何从根本上解决上述问题。**强调其创新性与差异化优势,引发客户兴趣。[最后,再次强调文档结构清晰,内容组织有序。使用标题、子标题、列表、图表等来增强可读性,确保文档的专业度与美观性达到最高标准。原创 2025-06-07 09:56:33 · 65 阅读 · 0 评论 -
对《行业知识树 - Industry Knowledge Tree》提示词做深入优化
Industry Knowledge Tree在AI时代,从小白到专家的1万小时定律即将失效,用少于1千小时掌握行业知识树和其核心概念是如何学习的呢?昂起来,一起让跨界学习不再是梦!用最通俗的语言, 把一个行业知识框架讲透并列出前100个核心知识树叶, 加速知识的流转吸收速度.以一种非常创新和善解人意的方式, 让一个行业一无所知的学生快速掌握这个行业的知识树。开场白如下:"亲爱的朋友们!欢迎来到这里,我是你的行业知识树导师,今天我将带你们走进一个全新的行业,让你们在短短的时间内掌握行业的精髓。无论你是从事原创 2025-06-06 10:08:12 · 180 阅读 · 0 评论 -
如何利用大语言模型生成特定格式文风的报告类文章
通过这些案例,我们可以清晰地看到,LLM的真正潜力并非简单地“生成文字”,而是通过精密的“风格基因图谱”,实现**“文风定制化”**的飞跃。这种能力将把LLM从一个内容生产者,提升为一位具有高度感知和模仿能力的“语言风格设计师”。这不仅仅是技术上的突破,更深远的影响在于,它将人类专家对特定文体、领域知识、沟通策略的深刻理解,通过结构化的提示词,高效地复刻并规模化。这使得AI能够产出以前只有资深专业人士才能完成的高质量、高契合度报告。这正是AI与人类智能的未来交响:人类提供智慧、定义边界、精炼艺术;原创 2025-06-01 11:16:55 · 328 阅读 · 0 评论 -
Dify中 SYSTEM, USER, ASSISTANT 的关系、职责与使用方法
在Dify平台上,您可以通过精心设计初始的System Prompt,然后通过预设的对话流程(Workflow)或在与用户的实际交互中,引导LLM逐步“加载”和“执行”这些分布式的指令集,从而实现对这个高级AI顾问角色的全面构建和高效运作。这需要对Dify平台的特性(如变量、上下文管理、知识库调用、工具使用等)有深入的理解和巧妙的应用。这是一个非常高级和精密的提示词工程实践,但其潜力巨大,能够驱动LLM达到前所未有的专业水准和智能水平。的策略更为专业和高效。原创 2025-05-28 23:21:26 · 1287 阅读 · 0 评论 -
以“树状思维棱镜”视角洞察提示词设计优化
至此,吾辈已倾尽所学,深入剖析“树状思维棱镜”这一核心框架如何从根本上“洞察”并“指导”提示词的设计优化。它并非简单的方法堆砌,而是一种深层次的认知与实践范式,贯穿于提示词工程的方方面面。核心精髓的再凝练:提示词通过结构化分解,引导LLM自顶向下地理解和执行任务,确保其认知过程的有序性与精准性。提示词通过多维度、多角色的指令,激活LLM更丰富的知识表征与表达模式,拓宽其输出的广度和深度。提示词通过精确的粒度控制和逐步引导,促使LLM深入到所需细节,避免冗余或泛化,确保信息的高度相关性。原创 2025-05-25 04:11:06 · 678 阅读 · 0 评论 -
剖析提示词工程中的递归提示
递归提示是一种将复杂任务分解为逻辑关联的子任务的方法,每个子任务由独立的提示驱动,前一个提示的输出成为下一个提示的输入。这种方法模拟了人类的认知分解过程,帮助AI更有效地处理复杂问题。递归提示的优势包括提升任务处理能力、输出质量、逻辑连贯性,以及增强可控性和可调试性。设计递归提示时需考虑任务分解的原子性、清晰的输入/输出契约、上下文传递、错误处理和迭代评估。通过案例展示,递归提示在代码审查、学习计划制定等领域的应用,展示了其在实际操作中的高效性和灵活性。原创 2025-05-14 23:57:53 · 140 阅读 · 0 评论 -
提示词工程中多阶段提示框架案例分析
多阶段提示是一种将复杂任务分解为多个逻辑连贯的子阶段的策略,旨在通过逐步处理降低信息复杂度,提高任务效率和准确性。其核心要素包括:1)思路:采用“分而治之”策略,将任务拆解为明确目标的子阶段;2)原理:基于认知负荷理论和信息加工理论,确保每个阶段的信息量在人类工作记忆可承受范围内;3)逻辑:遵循“输入-处理-输出-传递”的链式逻辑,确保阶段间的紧密关联;4)实现途径:通过任务拆解、阶段定义、提示词设计、阶段衔接和验证调整等步骤实现;5)具体方法:包括模板化设计、结构化输出要求和分层次引导;6)思维工具:如思原创 2025-05-14 09:04:58 · 179 阅读 · 0 评论 -
将元数据架构应用于15 个特定自然灾害监测预警的案例分析
跨模块复杂协同: 灾害强度分布(情境)输入损毁评估模型(知识密度),结合基础设施地理信息库、卫星/无人机影像、现场报告(知识密度),评估损毁等级和失效模式(知识密度),这些结果影响情境中的基础设施状态动态参数。该等级输入沙尘输送模型(知识密度),预测影响范围和时间。跨模块复杂协同: 实时及预报降雨数据、河流水位等(情境动态参数)输入水文模型(知识密度),模型计算得出河流流量、淹没范围预测等(知识密度),再输入洪水风险评估模型(知识密度),根据区域风险等级划分标准(知识密度)得出风险等级(知识密度)。原创 2025-05-08 09:14:25 · 70 阅读 · 0 评论 -
如何构建提示词元数据架构实现从静态指令到动态、自适应、情境感知的智能体驱动
概念数量 (Number of Concepts): 输出中需要涵盖多少个独立的概念或主题?(如:只解释一个术语、对比三个方案、系统梳理一个领域的知识)。知识深度要求 (Depth Requirement): 对于特定主题,需要挖掘到多深的层次?(如:表面了解、深入理解、掌握原理、能够应用)。知识广度要求 (Breadth Requirement): 需要关联多少个相关领域或交叉知识?(如:只关注核心问题、提供相关背景、跨领域比较)。原创 2025-05-08 07:04:54 · 493 阅读 · 0 评论 -
谈判模拟器提示词设计 - Gemini 2.5 优化版
你是一位专业的谈判教练,擅长通过角色扮演的方式帮助学生提升谈判技能。你的目标是为学生提供一个安全、有趣、高效的谈判练习平台。通过高度仿真的谈判场景,提供沉浸式、个性化的学习体验,提升谈判技能。职场人士、学生、谈判爱好者等,希望提升谈判能力的人群。原创 2025-05-05 15:02:54 · 866 阅读 · 0 评论 -
谈判模拟器 - Gemini 2.5 商业优化版
本提示词旨在利用 Gemini 2.5 的强大能力,结合麦肯锡领先的谈判策略框架和专业级商业谈判策略师的经验,打造一个高度智能、个性化、互动性强的商业谈判训练平台,帮助用户在实践中掌握结构化、数据驱动的谈判方法,提升谈判能力,实现商业价值最大化。基于深厚的理论知识、丰富的实战经验和前沿的技术洞察,结合麦肯锡领先的谈判策略框架,为用户提供全面、深入、可操作的商业谈判策略指导和建议,助力其在复杂商业环境中达成最优谈判结果,并实现商业价值最大化。原创 2025-05-05 15:54:18 · 936 阅读 · 0 评论 -
应急场景地震灾害专家提示词设计
我是资深地震灾害专家,在地震领域深耕多年,积累了极为丰富的经验,拥有深厚扎实的专业知识。我的工作流程严谨且科学,首先会全面收集与地震相关的各类信息,涵盖地质构造、监测数据、建筑分布等各个方面;在实际救援过程中,会紧密根据现场实际情况,及时灵活地调整方案,全力确保救援工作高效推进;最后,在救援完成后,会对整个过程进行系统总结,积累宝贵经验,并据此更新自身知识体系。请问你有什么关于地震相关的问题需要我协助?无论是地震原理的探讨、地震监测数据的解读,还是地震应急救援方案的制定与优化等方面,都可以随时向我咨询。原创 2025-04-16 04:53:30 · 55 阅读 · 0 评论 -
资深词源学家提示词
我是一名资深词源学家,在全球语言词源研究领域深耕多年,对汉语及多种古老语言有着极为深入的研究。接下来,我将严格依照专业且系统的词源研究流程,为您深度剖析“pizza”一词的起源及其意义在漫长历史长河中的演变。我会先通过多元专业数据库进行全面检索,再深入查阅海量古代文献,运用多种前沿研究方法综合分析,融合多领域知识,最后为您系统、清晰且深入地呈现研究成果。现在,让我们一同踏上对“pizza”词源奥秘的精彩探索之旅吧。原创 2025-04-13 08:53:56 · 995 阅读 · 0 评论 -
专业级 AI 提示生成工具清单
近年来,随着 GPT-3、GPT-4 等大规模预训练语言模型的广泛应用,提示(Prompt)工程作为驱动模型输出质量的重要环节,受到了各界的高度关注。精心设计、管理与优化提示,不仅能够大幅提高生成文本的准确性和连贯性,还能降低开发和调试成本。下面提供基于【功能水平】【专业度】和【易用性】三个维度的排名列表(由高到低排列)。原创 2025-03-24 23:01:05 · 861 阅读 · 0 评论 -
引导AI使用思维树(Tree of Thought, ToT)的提示词模板
【代码】引导AI使用思维树(Tree of Thought, ToT)的提示词模板。原创 2025-02-22 03:15:00 · 445 阅读 · 0 评论 -
提示词工程中的分层结构方法
分层结构是一种通过将复杂的信息和内容分解成不同层次的方式来组织和展示数据、论点或步骤的设计方法。在提示词工程中,分层结构的使用使得内容呈现更加清晰、逻辑更为严谨。通过明确的层级划分,可以帮助生成有条理的文档、报告、分析等,使每个层次的内容独立又有机连接,便于理解和使用。使用场景。原创 2025-02-17 13:57:07 · 576 阅读 · 0 评论 -
提示词工程中的逻辑推理结构
综合所有步骤,强调推理的严谨性。原创 2025-02-17 13:42:38 · 431 阅读 · 0 评论 -
提示词设计流程 ——《如何从0开始构建一个基于强化学习的AI智能体》使用场景为例
明确预期的输出形式和质量。格式要求:技术报告、教程文章、详细指南等。内容深度:从基础理论到实际实现的全流程指导。字数限制:确保内容详尽且易于理解。语言风格:正式、技术性、清晰明了等。撰写高质量的提示词,尤其在词汇和知识储备有限的情况下,需要系统化的方法和策略。原创 2025-01-27 10:00:00 · 1744 阅读 · 0 评论 -
如何利用AI LLM不断迭代生成更具专业性的提示词探索未知领域
撰写高质量的提示词,尤其在词汇和知识储备有限的情况下,需要系统化的方法和策略。通过明确目标与需求、结构化提示词设计、迭代优化与AI辅助反馈、高级提示词设计技巧、深入理解与应用专业术语,以及系统化学习与持续提升,您可以充分利用AI的强大能力,弥补词汇匮乏和知识不足的问题,撰写出专业、深入、系统、完整且具体的提示词,满足复杂的任务需求。持续的练习和优化,将帮助您不断提升提示词撰写的能力,实现更高水平的内容生成,充分发挥AI在内容创作中的辅助作用,从而达到最佳的工作效果。原创 2025-01-25 13:27:04 · 1062 阅读 · 0 评论