工业机器人轨迹优化方法
工业机器人作为现代工业自动化不可或缺的组成部分,其运动轨迹的规划与优化对于提升生产效率、确保产品质量、降低能耗以及延长设备使用寿命具有决定性意义。轨迹优化超越了简单的路径规划,旨在寻找满足一系列复杂约束条件下的最佳运动方案,以实现特定性能指标的最优化。
引言:工业机器人轨迹优化概述
定义、目标与重要性
轨迹优化是一个系统性的过程,其核心在于设计一条机器人运动轨迹,使其在满足既定约束的同时,能够最小化或最大化某个性能指标 1。从本质上讲,这是求解最优控制问题的一种开环方法,即在给定初始和最终状态下,计算出一条最佳的控制序列 1。一条轨迹被定义为一个将时间映射到机器人构型空间中特定配置的函数,它精确地描述了机器人在任意时刻应处的位置和姿态 2。优化问题的目标是找到一条能够最小化预设成本函数(U[ξ])的轨迹(ξ*),同时严格遵守起始和终止构型等边界条件 2。
成本函数 U 可以包含多种因素,从而定义“最优”轨迹的具体含义。常见的优化目标包括:
最小化时间:旨在实现运动时间最短化,直接提升生产效率和吞吐量 1。
最小化能耗或机械功:通过减少机器人运行过程中的电能消耗,降低运营成本,并有助于延长机器人设备的使用寿命 1。
最小化冲击力或冲击磨损:减少机器人运动中产生的振动和抖动,从而提高轨迹的平滑度,保护关节和机械结构,降低设备磨损 2。
轨迹平滑化:避免急剧的运动变化,使机器人动作更加流畅、自然和可预测。这在人机协作环境中尤为关键,有助于提高人类对机器人行为的理解和信任 2。
碰撞风险最小化/障碍物避让:确保机器人在复杂的工作环境中能够安全地移动,避免与自身、环境中的静态或动态障碍物发生碰撞 1。
最大化可操作性(Manipulability):通过优化轨迹,使机器人避免进入奇异点构型,从而保持其在工作空间中的灵活性和运动能力,尤其在末端执行器需要精确姿态的应用中至关重要 12。
最小化关节扭矩:减少机器人关节承受的力矩,有助于降低机械应力,提高运动精度 1。
轨迹优化在现代工业机器人应用中具有举足轻重的作用,其重要性体现在多个方面:
提高生产效率和吞吐量:通过缩短任务执行时间,优化机器人的运动路径,能够直接提升生产线的整体效率和产出 6。
降低运营成本:通过减少能耗和材料浪费,显著降低生产过程中的长期运营成本 3。
延长机器人使用寿命:平滑的轨迹和最小化的冲击能够有效减少机械磨损和应力,从而延长机器人的服务寿命 6。
增强安全性:有效的避障能力和可预测的运动模式对于在人机协作环境中确保操作人员的安全至关重要 2。
提升产品质量:在特定应用中,如喷涂,轨迹优化能够确保涂层厚度的均匀性,直接影响最终产品的质量 18。
克服传统路径规划的局限性:相较于随机探索树(RRT)等传统路径规划方法可能生成锯齿状或不直观的非最优路径,轨迹优化能够生成更高效、更平滑、更符合实际动力学约束的运动,从而弥补这些方法的不足 2。
轨迹规划与轨迹优化的区别
在机器人学领域,“路径规划”和“轨迹优化”是两个密切相关但又有所区别的概念。
路径规划(Path Planning) 主要关注在给定几何约束(如障碍物)下,找到一条从起始点到目标点的无碰撞路径 11。这是一个纯粹的几何问题,不涉及时间或动力学因素。可以将其类比为在地图上规划一条路线,它只指示了要经过的地点和转弯顺序,但并未规定驾驶的速度快慢 11。路径规划的核心目标是找到一条可行的、无碰撞的几何路径。
轨迹优化(Trajectory Optimization) 则是在路径规划的基础上,进一步为路径添加时间维度和动力学特性 3。它旨在优化特定的性能指标(如时间、能量、平滑度),同时满足速度、加速度、力矩等一系列动力学约束 3。轨迹优化将一条几何路径转换为一个完整定义了机器人运动随时间变化的函数,从而确保机器人能够以物理可行且最优的方式执行任务 25。
从技术发展历程来看,传统的路径规划方法(如RRT)解决了机器人“能否到达”的几何可行性问题 2。然而,在实际工业应用中,仅仅“能到达”是远远不够的,还需要考虑“如何更好地到达”,例如更快、更省力、更平稳地完成任务 2。这种对性能和效率的更高追求,推动了轨迹优化技术的兴起,它在路径规划的基础上,引入了时间、动力学和更精细的性能指标 3。这种演进反映了工业机器人技术从实现基本功能向追求极致性能和效率的转变,代表着工业生产对机器人系统提出更高要求的体现,即从“能用”到“好用”的跨越。
工业机器人轨迹优化的核心目标与约束
工业机器人轨迹优化是一个复杂的数学问题,其解决需要明确定义性能目标,并严格遵守物理及操作约束。这些目标和约束共同构成了优化问题的基本框架。
多目标优化考量
工业机器人轨迹规划通常需要同时考虑多个优化目标,以实现这些目标之间的平衡和整体最优 3。这些目标之间往往存在相互冲突的情况,例如,追求最短时间通常会导致更高的能耗和更大的冲击力。因此,在规划过程中需要在这些相互竞争的目标之间进行权衡和优化 3。
常见的多目标优化目标包括:
能耗最小化:旨在降低机器人运行过程中的电能消耗,从而减少运营成本,并支持绿色制造理念 1。
运动时间最短化:通过缩短任务执行时间来提高生产效率和吞吐量,这在快节奏的工业生产线中尤为关键 1。
冲击力最小化/轨迹平滑化:减少机器人运动过程中产生的振动和冲击,这有助于保护关节、延长设备寿命,并提高运动的“自然性”和安全性,尤其在人机协作场景下 2。
碰撞风险最小化:确保机器人在复杂环境中无碰撞地安全运动,避免与自身或外部环境发生意外接触 1。
最大化可操作性:通过优化轨迹,使机器人避免进入奇异点,从而保持其在工作空间中的运动灵活性和鲁棒性,尤其在末端执行器需要特定姿态的应用中至关重要 12。
最小化路径长度:在某些几何规划中,路径的长度也是一个重要的优化目标,直接影响效率 2。
最大化与障碍物的间隙:在避障的同时,尽可能地远离障碍物,以提高安全性 11。
在处理多目标优化问题时,通常会采用策略将多个优化目标转换为单一优化目标,例如通过定义归一化函数来达到降维的目的 3。另一种常见方法是通过加权求和的方式将多个成本函数合并为一个总成本函数,从而在不同目标之间进行权衡 24。
主要约束条件
轨迹优化必须在满足一系列严格约束条件下进行,这些约束确保了机器人运动的物理可行性、安全性和任务要求 1。
主要约束条件包括:
工作空间限制:机器人各关节和末端执行器不能超出其物理可达范围,这是最基本的几何约束 3。
碰撞避免:机器人自身各连杆之间(自碰撞)以及机器人与环境中的静态或动态障碍物之间不能发生碰撞。这是确保机器人安全运行的关键 1。
关节限制:包括关节角度、角速度、角加速度和角加加速度(Jerk)的物理限制。这些限制与机器人的硬件性能直接相关,确保运动在可控范围内 3。
动力学约束:机器人运动必须符合其动力学特性,例如驱动力矩、负载大小等。这些约束确保了轨迹在物理上是可执行的 3。
奇异点避免:机器人运动过程中应避免进入奇异点构型,因为在这些点机器人会失去自由度或控制能力,导致运动失控或精度下降 12。
末端执行器约束:针对特定任务,可能需要对末端执行器的运动施加额外约束,如保持工具尖端的速度和力、姿态限制等 29。
路径一致性:确保生成的轨迹在数学上连续且平滑,以避免不必要的振动和冲击 17。
环境因素:在特殊作业环境(如高温、低温、水下)下,机器人的性能可能受到限制,这些因素也需纳入轨迹规划的考量 4。
在机器人轨迹优化领域,从单一性能指标向综合性能的转变是一个显著趋势。早期优化可能仅侧重于单一目标,例如时间最短化 4。然而,实际工业应用的需求远不止于此,单一目标的追求往往会导致其他关键性能的恶化。例如,极致的速度可能伴随着高能耗和剧烈冲击 4。因此,研究和应用逐渐转向多目标优化,旨在同时平衡时间、能耗、平滑度、冲击、可操作性等多个相互关联的指标 3。这种转变体现了工业生产对机器人系统评估标准的日益复杂化和精细化,意味着机器人不仅要完成任务,更要作为一个综合系统,在多维度上实现最优性能,以满足更严格的生产要求和可持续发展目标。
此外,轨迹优化不仅要考虑基本的物理限制(如关节限位、碰撞),还要将更复杂的任务特定约束(如末端执行器力/速度、姿态、奇异点避免)纳入考量 12。这些任务约束往往与机器人的运动学和动力学模型紧密耦合 3。这种发展表明轨迹优化正在从纯粹的运动学或动力学问题,发展为与高级任务规划紧密结合的综合问题。通过将任务需求直接编码为优化约束,可以生成更智能、更符合实际操作需求的机器人行为,从而提升机器人在复杂、非结构化环境中的自主性。
以下表格概括了工业机器人轨迹优化的主要目标与约束:
表1:工业机器人轨迹优化目标与约束概览
类别 | 具体目标/约束 | 描述 |
优化目标 | 时间最短化 | 缩短任务执行时间,提高生产效率和吞吐量 |
能耗最小化 | 降低机器人运行电能消耗,减少运营成本,延长寿命 | |
冲击最小化/轨迹平滑化 | 减少振动和抖动,保护关节,延长寿命,提高运动自然性 | |
碰撞风险最小化 | 确保机器人在复杂环境中无碰撞地安全运动 | |
可操作性最大化 | 避免奇异点,保持机器人运动灵活性和鲁棒性 | |
路径长度最小化 | 减少机器人移动距离,提高效率 | |
与障碍物最大间隙 | 提高运动安全性 | |
关节扭矩最小化 | 减少关节应力,提高运动精度 | |
主要约束 | 工作空间限制 | 机器人各关节和末端执行器不能超出物理可达范围 |
碰撞避免 | 避免机器人自身各连杆之间或与环境障碍物发生碰撞 | |
关节角度限制 | 机器人各关节的物理旋转范围限制 | |
关节速度限制 | 机器人各关节的最大允许运动速度 | |
关节加速度限制 | 机器人各关节的最大允许运动加速度 | |
关节加加速度(Jerk)限制 | 限制加速度的变化率,确保轨迹平滑 | |
动力学约束 | 机器人运动需符合其动力学特性,如驱动力矩、负载 | |
奇异点避免 | 避免进入导致自由度损失或控制困难的构型 | |
末端执行器特定约束 | 维持工具尖端的速度、力或姿态等任务要求 | |
路径连续性 | 确保生成的轨迹在数学上连续且平滑 | |
环境因素 | 考虑高温、低温、水下等特殊作业环境对性能的影响 |
轨迹优化方法分类与原理
工业机器人轨迹优化方法种类繁多,可根据其基本原理和处理方式进行分类,主要包括几何优化、时间最优优化、动力学优化和智能算法优化。
几何优化方法
几何优化方法主要关注机器人运动路径的形状和空间特性,通常不直接涉及时间或动力学因素,但其输出是后续时间分配和动力学优化的基础。
插补方法 (Interpolation Methods)
插补方法通过数学函数(如多项式或样条曲线)连接一系列离散的路径点或关键点,从而生成平滑连续的机器人运动轨迹 9。
多项式插补:常用的方法是使用三次或五次多项式来定义机器人关节空间或任务空间中末端执行器的平滑路径 7。五次多项式因其能够有效解决加速度不连续的问题,从而获得更平滑的轨迹曲线而受到青睐 7。
样条插补:样条曲线由多段多项式连接而成,在工程应用中通常比单一高阶多项式更可靠,能够有效避免龙格现象,并保证加速度的连续性 17。三次样条插补常用于关节空间轨迹规划,有助于提高逆运动学计算效率 32。此外,非均匀有理B样条(NURBS)曲线也因其灵活性和局部控制能力而被应用于轨迹规划 20。
梯形速度曲线:这是一种简单而高效的方法,通过将恒定速度段与加速和减速斜坡连接起来创建轨迹,特别适用于点对点运动 9。
在轨迹生成阶段,算法设计者需要在运动质量(如平滑度、精度)和计算资源(如实时性)之间进行权衡。多项式和样条插补是实现轨迹平滑性的基础 9。然而,高阶多项式虽然能提高精度,但会显著增加计算量 17。样条曲线则在保证平滑性的同时,通过分段处理有效地平衡了计算效率 32。选择合适的插补方法是实现高效且高质量机器人轨迹的关键。
采样基方法 (Sampling-based Methods)
采样基方法通过在机器人的高维构型空间中随机采样来构建图或树,从而找到从起始点到目标点的可行路径 10。
优点:这类方法能够有效处理高维复杂环境中的运动规划问题,通过探索自由空间来找到解决方案,并提供概率完备性,即在足够长的时间内,如果存在解,算法总能找到它 10。它们不依赖于机器人的精确状态空间模型,具有较强的适应性 23。
代表算法:
概率路线图 (PRM):通过在构型空间中随机采样生成节点,并在这些节点之间建立连接以形成路图,然后在此路图上搜索路径 10。
快速扩展随机树 (RRT):从起始点开始,通过随机采样不断扩展一棵树,直到树的某个节点接近目标点,从而快速找到一条初始路径。RRT特别适用于高维空间中的探索 10。
RRT*:作为RRT的改进版本,RRT*在找到初始路径后,会继续进行采样和“重布线”(rewiring)树结构,以渐近最优的方式收敛到更优的轨迹 2。
缺点:传统的RRT算法生成的路径通常是非最优的,可能出现锯齿状或不直观的运动,不适合直接用于工业机器人 2。此外,其收敛速度可能较慢,搜索时间波动大,并且对搜索空间的大小和数据表示方案敏感 10。RRT*虽然提供了渐近最优性,但通常需要大量的内存和计算时间才能达到较好的优化效果 22。
改进策略:针对RRT算法的局限性,研究者提出了多种改进策略,包括目标偏置采样、启发式采样、引入人工势场(APF)引导节点生成、动态步长策略、简化碰撞检测流程以及路径剪枝等,以提高其效率和路径质量 23。
采样基方法如RRT以其快速找到可行解的能力在高维空间中表现出色 2。然而,其牺牲了路径的最优性和平滑性 2。RRT*的出现尝试弥补这一缺陷,通过渐近最优性来提升路径质量,但代价是更高的计算成本 22。这促使了RRT与轨迹优化方法的结合,其中RRT可以提供一个“大方向”的初始轨迹,而轨迹优化则在此基础上进行平滑和微调 25。这种混合方法结合了不同算法的优势,能够在复杂环境中实现既可行又高质量的轨迹,这体现了在计算效率和解的质量之间寻找平衡的机器人运动规划领域的核心挑战。
时间最优优化方法
时间最优轨迹规划旨在在满足机器人速度、加速度和加加速度等运动学和动力学约束的前提下,最小化机器人完成特定任务所需的时间 4。这是工业机器人应用中提高生产效率最直接的手段之一。
实现时间最优规划通常有以下几种思路:
在给定约束条件下,寻找并利用机器人的最大加速度和最大速度能力,通过提高运动速度来缩短运动时间 4。
采用各种优化算法,在满足所有约束的可能轨迹中,寻找时间最短的轨迹 4。
将时间最短的目标转化为其他更易于表达和求解的模型,例如将时间最优问题转化为轨迹中相邻路径点之间路径最短的问题 4。
通过改进运动学模型和优化算法,直接实现时间最优规划 32。
在实际应用中,改进的麻雀搜索算法(SSA)被提出用于时间最优轨迹规划。该算法通过引入混沌映射来优化初始种群的生成方式,并结合自适应步长因子,显著提高了算法的收敛速度和全局搜索能力,从而更有效地找到时间最优轨迹 7。
追求时间最短往往意味着机器人需要以最大速度和加速度运行,这可能导致更大的冲击、振动和能耗 4。为了减小振动冲击,在时间最优规划时,应严格控制加加速度在一个较小水平 4。这再次强调了多目标优化的必要性。纯粹的时间最优解在实际工业应用中可能因其带来的副作用(如机械磨损、噪音)而不可接受。因此,时间最优通常需要与其他目标(如平滑度、能耗)进行权衡,形成混合优化问题。
动力学优化方法
动力学优化方法在轨迹规划中考虑机器人的质量、惯性、驱动力矩等物理特性,旨在生成满足动力学约束并优化特定性能指标的轨迹 3。
最优控制理论 (Optimal Control Theory)
轨迹优化本质上是计算最优控制问题开环解的技术 1。它旨在找到一个控制函数,以优化关于控制和预测状态的某些性能指标 28。
问题框架:一个典型的轨迹优化问题需要定义系统的动力学函数、在整个轨迹上需要最小化的成本函数、一系列必须满足的约束条件以及起始和终止的边界条件 28。
挑战:最优控制问题是无限维优化问题,因为其决策变量是函数而非简单的实数 1。此外,问题通常是非凸的,这使得有效求解变得困难 36。非可微约束(如最短时间、避障)通常需要被重构为硬约束或通过惩罚函数纳入成本函数 28。
直接法 (Direct Methods):将无限维的轨迹优化问题直接离散化为有限维的约束参数优化问题,然后使用数值优化算法求解 1。这种方法通常更容易设置和求解,但在理论上不提供内置的精度度量 1。
间接法 (Indirect Methods):首先分析性地构建最优性的必要和充分条件(如庞特里亚金最小化原理,PMP),然后将这些条件离散化,再求解由此产生的优化问题 1。间接法以其高精度而闻名,但设置过程复杂,尤其在处理路径不等式约束时,需要用户显式定义约束激活的时机 1。
最优控制理论为轨迹优化提供了坚实的数学基础和严谨性 1。间接法通过求解最优性条件,理论上能够获得高精度解 1。然而,在实际工业应用中,其设置的复杂性(如需要显式定义约束激活时机)以及对非凸问题的处理难度,使得直接法更为常用 1。直接法通过直接离散化,简化了问题设置,但牺牲了理论上的精度保证 1。这体现了在工程实践中,往往需要在理论最优性和实际可操作性之间进行权衡。直接法因其易用性和对复杂约束的鲁棒性,成为工业应用中的主流选择,即使其结果可能只是局部最优。
转录方法:射击法与搭配法 (Transcription Methods: Shooting and Collocation Methods)
转录方法是将连续时间域的轨迹优化问题转换为离散的参数优化问题的方法 1。
射击法 (Shooting Methods):这类方法基于仿真,通过显式积分器(如Runge-Kutta方案)来强制满足系统的动力学约束 1。
单次射击 (Single Shooting):这是最简单的射击法。它将整个轨迹视为一个单一的模拟段,通过调整初始参数(如初始控制输入)来模拟整个运动过程,并检查最终状态是否满足目标 1。单次射击适用于简单问题或已有极佳初始猜测的情况 1。
多次射击 (Multiple Shooting):作为单次射击的扩展,多次射击将整个轨迹分解为多个较短的段,并在每段之间添加“缺陷约束”(defect constraint)以确保轨迹的连续性 1。这种方法生成一个大型但稀疏的非线性规划问题,通常比单次射击产生的紧密问题更容易求解。它特别适合处理复杂动力学但控制相对简单的问题 1。
搭配法 (Collocation Methods):也称为同步法,这类方法基于函数逼近,通常使用隐式积分器。它们通过多项式样条来近似状态和控制轨迹,并在特定的“搭配点”(collocation points)强制满足动力学约束 1。
直接搭配 (Direct Collocation):这类方法直接使用多项式样条来近似状态和控制轨迹 1。例如,梯形搭配法使用线性样条来表示动力学、路径目标和控制,并通过梯形积分来满足动力学 1。Hermite-Simpson搭配法则使用三次Hermite样条表示状态,并通过Simpson积分满足动力学 1。直接搭配方法适用于状态和控制精度要求相似的问题,且对复杂的路径约束具有较好的鲁棒性 1。
正交搭配 (Orthogonal Collocation):尽管技术上是直接搭配的子集,但其实现细节差异较大,常被视为独立的方法。它通常采用高阶样条,并且每个轨迹段可以由不同阶的样条表示。该方法的名称来源于在状态和控制样条中使用正交多项式 1。正交搭配方法最适合实现高精度解,尤其当解是平滑时 1。
伪谱离散化 (Pseudospectral Discretization):在这种方法中,整个轨迹由时域中的一组基函数表示,这些基函数不一定是多项式。当用于求解平滑解的轨迹优化问题时,伪谱方法可以实现谱(指数)收敛 1。
微分动态规划 (Differential Dynamic Programming, DDP):这种技术与其他方法有所不同,它不明确分离转录和优化过程。相反,它沿着轨迹执行一系列迭代的前向和后向传递。每次前向传递都确保满足系统动力学,而每次后向传递则满足控制的最优性条件。通过这种迭代,算法最终收敛到一个既可行又最优的轨迹 1。
从单次射击到多次射击,再到各种搭配法,轨迹优化方法在数值稳定性、收敛性以及处理复杂约束方面的能力不断提升 1。例如,多次射击通过将问题分段,降低了其非线性程度,从而使得求解更容易 33。搭配法则通过直接在离散点上强制满足动力学,避免了仿真误差的累积 33。这种演进反映了对连续时间最优控制问题进行数值求解的挑战。不同的转录方法本质上是不同的离散化策略,每种策略都在计算效率、精度和鲁棒性之间做出了不同的权衡,以适应不同类型的动力学系统和约束条件。
智能算法优化方法
智能算法(或元启发式算法)因其无需精确模型、全局搜索能力和处理非线性问题的优势,被广泛应用于工业机器人轨迹优化。
遗传算法 (Genetic Algorithms, GA)
遗传算法是一种模拟自然选择和遗传的生物进化机制的优化方法 10。它通过种群初始化、选择、交叉和变异等操作,迭代地寻找问题的最优解 8。
优点:遗传算法具有高效率、鲁棒性强、并行搜索能力强等特点,特别适用于解决复杂的优化问题,尤其在环境模型不完全已知的情况下 37。它也能够有效处理多目标优化问题 10。
缺点:传统遗传算法生成的路径可能不平滑,通常由多段线组成,这在实际机器人运动中可能导致抖动 39。此外,它对动态障碍物的避让可能不敏感 39。传统GA还容易陷入局部最优解 10,并且在固定长度染色体和偏置编码下效率不高,甚至可能生成无效路径 40。
改进:为克服这些局限性,研究者提出了多种改进的遗传算法。例如,自适应PRGA通过改进基因选择、交叉和变异公式,并自适应调整交叉和变异概率,以保证轨迹的平稳性、减少冲击,并优化动作时间 8。
遗传算法在全局搜索能力上表现突出,能够有效探索复杂的解空间 39。然而,其生成的路径往往由离散点或线段组成,缺乏机器人实际运动所需的平滑性 39。这导致遗传算法通常需要与插补方法(如样条插补)结合进行后处理,以生成可执行的平滑轨迹 8。这说明了启发式算法在解决“找到好解”和“找到可执行解”之间存在差距。在实际应用中,智能算法的优势(全局搜索)需要与传统几何方法(平滑性)相结合,才能产生符合工业标准的实用轨迹。
粒子群优化 (Particle Swarm Optimization, PSO)
粒子群优化算法是一种模拟鸟群捕食过程的群体智能算法 10。它通过粒子在多维搜索空间中不断调整速度和位置,协同寻找最优解 42。每个粒子都会记录其自身找到的最佳位置(个体最优值,pb)和整个群体找到的最佳位置(全局最优值,gb),并根据这些信息更新自己的速度和位置 42。
优点:PSO算法以其高效率、强大的全局优化能力、良好的适应性和可扩展性而著称,且算法结构相对简单,易于实现,所需参数设置较少 42。它也适用于解决多目标优化问题 10。
缺点:传统的PSO算法容易过早收敛,从而陷入局部最优解 42。此外,其性能在一定程度上依赖于参数的选择,可能缺乏普适性 42。
改进:为解决陷入局部最优的问题,研究者提出了多种改进策略。例如,引入随机扰动项可以帮助粒子跳出局部最优,探索潜在的全局最优区域 42。使用自适应权重策略可以根据粒子当前状态动态调整参数 42。通过归一化步长成本(NSC)来初始化粒子,可以引导算法更有效地探索高成本区域,从而提高收敛性和解的质量 43。
PSO以其快速收敛和全局搜索能力而受到青睐 42。然而,其核心挑战在于如何避免过早收敛到局部最优解 42。引入随机扰动和自适应权重等改进措施,正是为了增强其跳出局部最优的能力,从而提升全局搜索性能 42。这反映了元启发式算法在理论上保证“找到解”和实际中“找到足够好且是全局最优的解”之间的差距。持续的算法改进工作集中在如何平衡探索(exploration)和利用(exploitation),以在有限时间内找到更高质量的解。
深度强化学习 (Deep Reinforcement Learning, DRL)
深度强化学习结合了深度神经网络的感知能力和强化学习的决策能力,使机器人能够通过与环境的试错交互来学习一个策略函数,以最大化累积奖励 24。DRL特别适用于处理高维状态/观测空间和非线性动力学系统 44。
模型基(Model-based)与无模型(Model-free):
模型基RL:这类方法首先学习机器人的动力学前向模型,然后在内部模拟中优化策略。这种方法能够显著减少与物理系统的交互次数,从而提高样本效率 45。
无模型RL:这类方法直接通过与物理系统的试错交互来学习,不构建显式的环境模型 45。
优点:DRL能够处理复杂的决策问题,在没有精确数学模型和物理约束的情况下找到最优平衡策略 24。它有望实现轨迹规划的通用性,避免人工干预参数调节,从而提高机器人的自主性和适应性 4。
缺点:DRL方法通常效率低下,容易陷入局部最优解 44。在实际机器人应用中,它仍然面临稳定性、样本效率和处理长周期任务的挑战 46。
改进:为解决这些问题,研究者提出了多种改进方案。例如,好奇心网络和策略-估值-好奇心框架(ACC)通过加强对未知区域的探索,有效提高了DRL方法的学习效率并避免了局部最优解 44。
DRL作为一种强大的数据驱动方法,在处理复杂、非线性系统方面展现出巨大潜力 46。然而,纯粹的无模型DRL在机器人领域面临样本效率低、需要大量真实世界交互的挑战 45。因此,模型基DRL通过学习机器人动力学模型并在模拟中优化策略,显著减少了对物理交互的需求,使其更适用于实际机器人应用 45。这表明未来机器人轨迹优化将更多地倾向于结合数据驱动(DRL)和模型驱动(如物理定律、先验知识)的方法 47。这种“数据与知识双轮驱动”的人工智能方法有望克服纯数据驱动方法的局限性,实现更通用、更鲁棒、更高效的机器人智能化水平。
以下表格对主要的轨迹优化方法进行了对比:
表2:主要轨迹优化方法对比
方法类别 | 代表算法 | 基本原理 | 优势 | 劣势 | 典型应用 |
几何优化 | 插补方法 | ||||
三次/五次多项式 | 通过多项式函数连接离散点,生成平滑路径 | 实现轨迹平滑,易于实现 | 高阶多项式计算量大,可能缺乏全局最优性 | 点对点运动,简单路径生成 | |
样条插补 | 通过分段多项式连接离散点,保证连续性和平滑性 | 保证加速度连续性,避免龙格现象,平衡平滑与计算效率 | 局部最优性,对复杂约束处理能力有限 | 关节空间轨迹规划,高平滑度要求 | |
采样基方法 | |||||
RRT | 随机探索构型空间,快速构建随机树找到初始路径 | 适用于高维复杂环境,概率完备性,不依赖精确模型 | 路径非最优,可能锯齿状,搜索时间波动大,不适合狭窄通道 | 复杂环境探索,初始路径生成 | |
RRT* | RRT改进,渐近最优,通过重布线优化路径 | 渐近最优性,路径质量更高 | 需要大量内存和时间,收敛速度相对慢 | 高质量路径规划,复杂避障 | |
时间最优 | SSA(改进) | 在约束下寻找最大速度/加速度,或转化为优化问题 | 提高生产效率,缩短任务时间,增强收敛速度和全局搜索能力 | 可能导致高能耗和冲击,需要与其他目标权衡 | 生产线效率提升,快速任务执行 |
动力学优化 | 最优控制理论 | ||||
直接法 | 将无限维问题直接离散化为有限维优化问题求解 | 易于设置和求解,对复杂约束鲁棒 | 无内置精度度量,结果可能为局部最优 | 工业机器人运动控制,复杂系统轨迹生成 | |
间接法 | 分析性构建最优性条件(PMP),然后离散求解 | 精度高,理论严谨 | 设置复杂,难处理路径不等式约束 | 航空航天等高精度要求领域 | |
转录方法 | |||||
单次射击 | 调整初始参数,模拟整个轨迹,检查最终状态 | 简单,适用于简单问题或良好初始猜测 | 难以处理复杂问题,对初始猜测敏感 | 简单运动控制,参数寻优 | |
多次射击 | 将轨迹分段,每段间加缺陷约束,形成稀疏NLP | 易于求解,对复杂动力学但简单控制的问题效果好 | 增加变量和约束数量,路径约束可能更具挑战性 | 复杂动力学系统,如人形机器人步态生成 | |
直接搭配 | 用多项式样条近似轨迹,在搭配点强制满足动力学 | 对路径约束鲁棒,状态和控制精度相似 | 精度可能较低,计算量相对大 | 工业机器人路径跟随,实时轨迹生成 | |
正交搭配 | 用高阶正交多项式近似,实现指数收敛 | 精度高,尤其对平滑解 | 实现复杂,可能难以处理路径约束 | 高精度轨迹生成,如精密加工 | |
DDP | 迭代前向/后向传递,同时满足动力学和最优性 | 最终收敛到可行且最优轨迹,不分离转录和优化 | 计算复杂,对初始轨迹敏感 | 复杂非线性系统,如足式机器人运动 | |
智能算法 | 遗传算法 (GA) | 模拟自然选择和遗传,通过进化寻找最优解 | 高效率,鲁棒性强,并行搜索,适用于多目标 | 路径可能不平滑,易陷入局部最优,对动态障碍物不敏感 | 机器人单元布局优化,复杂路径规划 |
粒子群优化 (PSO) | 模拟鸟群捕食行为,粒子协同搜索最优解 | 高效率,全局优化能力,适应性强,易于实现 | 易陷入局部最优,性能依赖参数选择,缺乏普适性 | 机械臂运动规划,多目标轨迹优化 | |
深度强化学习 (DRL) | 机器人通过试错学习策略,最大化累积奖励 | 处理高维状态/非线性动力学,无需精确模型,通用性强 | 效率低下,易陷入局部最优,样本效率低,真实世界挑战 | 自主导航,复杂操作任务,人机协作 |
常用软件工具与库
为了将轨迹优化理论应用于实际工业机器人系统,需要借助专业的软件工具和库。这些工具涵盖了从仿真、规划到实时控制的各个环节,为研究和开发提供了强大的支持。
开源工具与库
开源工具和库在机器人社区中扮演着重要角色,它们提供了灵活、可定制的解决方案。
ROS MoveIt!:作为机器人操作系统(ROS)的组成部分,MoveIt! 是一个广泛使用的开源框架,用于机器人运动规划、操作、3D感知和控制 49。它集成了多种运动规划算法,如开放运动规划库(OMPL)、RRT和PRM,能够与ROS无缝集成,支持实时轨迹调整,并提供强大的可视化工具RViz 49。MoveIt! 还集成了TrajOpt(一种序列凸优化算法,通过凸近似和惩罚函数处理非凸约束)和STOMP(一种概率优化框架,通过生成噪声轨迹来探索空间)等轨迹优化插件,以应对复杂的规划挑战 50。然而,MoveIt! 的学习曲线相对陡峭,且在运行复杂仿真或处理高自由度机器人时可能需要大量计算资源 49。
Drake:由麻省理工学院开发,Drake是一个高性能的C++工具箱,专为复杂机器人系统的分析、设计和仿真而设计,其功能涵盖轨迹优化、动力学仿真和控制系统设计 53。Drake实现了多种轨迹优化方法,包括DirectCollocation、DirectTranscription、MultipleShooting,以及时间最优路径参数化方法Toppra 53。它还提供了Python接口,方便用户进行开发和实验 54。
OpenRAVE:这是一个用于机器人运动规划和控制的开源库 52。OpenRAVE提供轨迹计时插件,可以将线性关节空间路径转换为具有加速度和速度限制的时间轨迹,并能添加平滑的圆弧过渡 55。值得一提的是,TrajOpt最初就是在OpenRAVE与Bullet物理引擎的环境下进行基准测试和集成的 52。
Horizon:Horizon是一个专为机器人系统设计的开源轨迹优化框架,提供了用户友好的Python API,支持直接同步方法,并集成了多种求解器 31。其模块化结构使其能够处理固定基座和浮动基座系统、接触切换、可变时间节点,并支持多种转录和积分器,以及自定义求解器,从而为多样化的任务提供灵活性 56。
Aligator:Aligator是一个高效且多功能的C++库,专注于实时约束轨迹优化 57。它提供了最优控制问题的建模接口,以及高效的约束轨迹优化求解器,如近端微分动态规划(ProxDDP)和可行微分动态规划(FeasibleDDP)。Aligator还支持Pinocchio刚体动力学库及其分析导数,并可与Crocoddyl轨迹优化库集成 57。
cuRobo:cuRobo是一个利用CUDA加速的机器人库,提供正逆运动学、机器人与世界碰撞检测、数值优化(梯度下降、L-BFGS、MPPI)、几何规划和轨迹优化功能 58。它通过并行计算显著加速了这些算法的执行,并能够惩罚加加速度和加速度,从而生成更平滑、更短的轨迹。此外,cuRobo还利用nvblox进行基于深度摄像头的避障 58。
商业软件
商业软件通常提供更成熟、用户友好的界面和专业支持,适用于工业生产环境。
Siemens Process Simulate / KineoWorks:
Process Simulate:西门子Process Simulate软件用于机器人和自动化制造系统的虚拟开发、仿真和调试。它支持无碰撞机器人运动路径规划、自动机器人放置和可达性测试、机器人操作周期时间与能耗优化,以及多机器人工作站的同步简化等功能 59。
KineoWorks:作为西门子软件的一部分,KineoWorks可以集成到其他软件应用中,自动计算和优化工业机器人和机床的无碰撞轨迹。它允许用户根据周期时间或能效等特定约束进行优化 60。
FANUC ROBOGUIDE:这是FANUC机器人专用的离线编程和仿真软件 61。ROBOGUIDE允许用户在虚拟环境中创建、编程和仿真机器人,清晰地可视化单机器人或多机器人布局,从而降低昂贵的物理原型成本和设置时间 61。它还支持高效的单元和周期时间评估、CAD文件集成、离线编程以及VR(虚拟现实)支持等功能 61。
MATLAB/Simulink (Robotics System Toolbox):MATLAB和Simulink的机器人系统工具箱提供了用于设计、仿真、测试和部署机械臂和移动机器人应用的工具和算法 62。该工具箱包含碰撞检测、路径规划、轨迹生成、正逆运动学和动力学算法 63。用户可以在Simulink中实现采样基运动规划器,并生成具有速度和加速度约束的轨迹 64。
AKEOPLUS:这是一款专为工业机器人设计的无代码机器人软件,提供云端部署、仿真、自动配置和轨迹优化功能 65。AKEOPLUS通过友好的用户界面和预设计模块及动作,使非机器人专家或程序员也能轻松进行机器人编程。它能够自动寻找最优机器人解决方案,并集成了AI和视觉库,以应对更复杂的任务 65。
CoppeliaSim (前身为 V-REP):这是一个多功能的机器人仿真平台,支持路径规划和轨迹生成 49。CoppeliaSim支持多种机器人类型,包括移动机器人、机械臂和无人机,并提供内置的运动规划功能。用户可以通过Lua脚本进行高度定制,其用户友好的视觉拖放界面也降低了学习难度 49。
从单一功能到集成化平台的演进是机器人软件工具发展的一个显著趋势。早期工具可能专注于特定功能,如路径查找或仿真 49。然而,随着机器人应用复杂性的增加,对集成度更高的平台需求日益增长。MoveIt!、Process Simulate和AKEOPLUS等工具提供了从运动规划、仿真、碰撞检测到离线编程、实时调整甚至AI集成的全栈解决方案 49。这种趋势反映了工业界对“一站式”解决方案的渴望,以简化机器人系统的开发、部署和维护。集成化平台通过减少不同工具间的切换和数据转换,显著提高了工作效率,降低了复杂性,并促进了多学科协作。
同时,实时性与计算加速的持续追求也是机器人轨迹优化领域的重要特点。工业应用对实时性有极高要求,传统的复杂优化算法可能因计算量大而难以满足 66。因此,像cuRobo这样利用CUDA加速的库 58,以及Aligator这样专注于实时约束轨迹优化的C++库 57 应运而生。TrajOpt和STOMP在ROS中的集成也强调了对实际规划时间的优化 52。这表明实时性能是机器人轨迹优化领域一个永恒的挑战和研究热点。解决这一问题不仅依赖于算法本身的效率提升,还依赖于底层计算硬件的进步(如GPU加速)以及软件架构的优化,以确保复杂计算能够在严格的时间窗口内完成。
工业应用案例与效益
工业机器人轨迹优化在多个行业和应用中展现出显著的效益,直接提升了生产效率、产品质量和成本效益。
焊接与喷涂
焊接:工业机器人广泛应用于焊接领域,轨迹优化在此类应用中具有重要的实际意义 5。例如,通过优化激光焊接的能耗,可以实现高达16%的能耗节省 13。
喷涂:喷涂机器人需要实现高均匀性的涂层厚度,轨迹优化对于实现这一目标至关重要 18。
优化目标:喷涂过程的优化目标包括涂层厚度均匀性、表面粗糙度、材料浪费和喷涂周期时间 18。
方法:通过修改喷枪轨迹之间的偏移距离来优化涂层厚度偏差 21。此外,利用机器学习技术(如随机森林回归)可以优化喷涂轨迹,从而实现可接受的涂层覆盖,减少过喷,并提高复杂曲面的均匀性 18。
效益:这些优化显著提升了产品质量,减少了材料浪费,并降低了生产成本 18。
密封胶涂覆:在汽车制造中,机器人沿车身焊缝涂覆密封胶以确保水密性。轨迹优化在此应用中旨在找到时间最优且无碰撞的生产计划,确保所有焊缝一次性处理,从而提高生产效率 13。
效益:这种优化能够提高吞吐量,并减少机器人编程的开发时间 14。例如,宝马(BMW)案例中,随机键优化器(RKO)框架实现了约10%的改进,这直接转化为成本节约和产量增加 14。KUKA KR30-3机器人应用于密封胶涂覆的案例研究显示,通过同时优化可操作性和电能消耗,实现了时间优化10.75%,可操作性优化58.67%,电能优化70.65% 13。这些量化效益表明了轨迹优化在实际工业生产中的巨大经济价值。
物料搬运与装配
物料搬运:在物料搬运应用中,机器人通过优化轨迹来最小化总移动距离或能耗,从而提高物流效率 19。
装配:在复杂的机器人装配任务中,轨迹优化可以优化速度与轨迹长度之间的关系,从而显著减少周期时间 19。
效益:在汽车装配单元中,优化机器人基座的放置可以减少高达20%的任务执行时间 6。对于SCARA型机器人,通过优化布局可以有效降低能耗 19。
案例:一项研究涉及固定发动机部件的螺钉拧紧任务,通过优化机器人动力学方程来计算完成任务所需的最优时间,从而提升装配效率 19。
其他应用
去毛刺、高速铣削:这些应用需要高精度机器人和经过优化的轨迹规划与控制算法,以确保加工质量和效率 5。
检测:通过优化机器人的运动序列,可以提高检测过程的效率和准确性 60。
以下表格总结了工业机器人轨迹优化的典型应用案例及其量化效益:
表3:工业机器人轨迹优化应用案例与量化效益
应用场景 | 优化目标 | 优化方法示例 | 量化效益示例 | 来源 |
密封胶涂覆 (汽车) | 时间最短化, 碰撞避免 | 随机键优化器 (RKO) | 吞吐量提高,生产计划时间缩短约10% (3.75秒-2.39秒) | 14 |
可操作性最大化, 电能消耗最小化 | Kalman方法 | 时间优化达10.75%,可操作性优化达58.67%,电能优化达70.65% (KUKA KR30-3机器人) | 13 | |
喷涂 | 涂层厚度均匀性, 表面粗糙度, 材料浪费, 周期时间 | 机器学习 (随机森林回归), 喷枪轨迹偏移优化 | 提高产品质量,减少过喷,降低成本,R²值高 (0.9224-0.9707) | 18 |
激光焊接 | 能耗最小化 | 数学模型优化 | 能耗节省16% | 13 |
机器人装配 | 速度-轨迹长度关系, 周期时间 | 机器人动力学方程算法 | 任务执行时间减少高达20% (通过优化机器人基座放置) | 6 |
物料搬运 | 总距离最小化, 能耗最小化 | 布局优化模型 (SCARA机器人) | 降低能耗 | 19 |
一般工业机器人操作 | 效率, 能耗, 机械冲击 | S形速度曲线改进, 5-3-5分段插补 | 提高执行效率,降低能耗,减少机械冲击 (GSK RB08A3机器人) | 16 |
工作效率, 关节振动冲击 | 增强型多策略麻雀搜索算法 (ISSA) | 运行时间缩短47% (相比未优化),减少关节振动冲击 | 7 |
挑战与未来发展趋势
工业机器人轨迹优化领域在取得显著进展的同时,也面临着诸多挑战,并呈现出明确的未来发展趋势。
实时性与复杂环境
在工业应用中,机器人轨迹优化对实时性有着极高的要求,尤其是在动态和非结构化环境中 66。
动态障碍物:在动态环境中,障碍物(如其他机器人、人类工人)不断移动,使得规划固定路径变得困难 68。传统的静态路径规划算法(如A*或Dijkstra)难以适应路径规划后的环境变化 68。
计算复杂性:优化问题通常涉及高维状态空间和非线性动力学,导致计算量巨大,难以在实时性要求下找到最优解 27。大规模问题(如涉及工业机械臂的问题)的图基方法会因搜索空间过大而效率低下 67。
不确定性:传感器噪声或遮挡可能导致机器人误解环境或自身位置,动态变化可能无法立即检测到 68。预测动态障碍物的轨迹非常复杂,特别是当其行为不完全可知时 68。
平衡安全与效率:在动态环境中,过度强调安全性可能导致机器人行为过于谨慎,降低效率;而过于激进的路径则可能导致碰撞 68。
狭窄通道问题:某些算法(如RRT)在处理狭窄通道时性能不佳 22。
硬件局限性:有限的板载计算资源和可能退化/失效的机械部件,进一步增加了实时轨迹优化的难度 69。
为克服这些挑战,研究者正在探索多种策略:
动态路径规划算法:采用支持实时重规划的算法,如D* Lite、RRT*(可适应动态更新)和动态窗口法(DWA)用于局部避障 68。
传感器融合与SLAM:结合多传感器数据(如激光雷达、摄像头、惯性测量单元)以提高环境感知能力,并使用同步定位与建图(SLAM)技术实时更新地图和提高定位精度 68。
预测建模:利用机器学习或卡尔曼滤波器预测动态障碍物的运动,并据此进行规划 68。
分层规划:采用全局规划器处理长期目标,局部规划器处理短期避障,例如全局A*结合局部DWA控制器 68。
成本地图动态更新:动态更新占据栅格和成本地图以反映移动障碍物,并引入膨胀区域以保持安全距离 68。
AI、机器学习与数字孪生技术融合
未来工业机器人轨迹优化的一个重要趋势是人工智能(AI)、机器学习(ML)和数字孪生(Digital Twin)技术的深度融合 4。
机器学习与轨迹规划:机器学习有望通过学习自主探索最佳轨迹曲线构造方法,并避免求解过程中人为干预参数调节,从而实现轨迹规划的通用性 4。基于数据驱动的方法正在改进运动规划流程,通过处理大规模数据集来评估和优化运动规划模型 66。深度强化学习(DRL)在处理高维状态空间和非线性动力学方面展现出巨大潜力,能够实现复杂的机器人行为 46。好奇心网络等改进方法可以提高DRL的学习效率并避免局部最优 44。
数字孪生技术:数字孪生作为物理系统的虚拟副本,能够实现机器人系统的连续监测、仿真和控制,从而显著提升预测性维护和实时系统优化能力 72。
实时优化:数字孪生通过持续比较数字模型预测与物理系统性能,动态调整控制参数、优化轨迹和管理能耗 72。例如,模型预测控制(MPC)算法可以集成到数字孪生中,以评估多种控制场景并选择最佳配置 72。
预测性维护:利用实时数据和历史趋势,数字孪生可以预测部件退化并主动安排维护活动 72。
AI训练加速:数字孪生提供了一个更快、更安全、更可扩展的环境来训练和优化AI模型,特别是视觉AI系统 73。通过合成数据生成和动态域随机化,工程师可以在虚拟环境中模拟数千种场景(不同物体类型、照明条件、摄像机角度、天气模拟甚至故意异常),从而训练出更鲁棒、更适应性强的AI视觉系统 73。
虚实交互优化:数字孪生技术能够实现虚拟模型与物理实体之间的数据交互,从而动态调整物理机器人的预设轨迹,纠正运动误差,提高轨迹精度 38。
混合优化方法:优化基TAMP(任务与运动规划)方法将高层任务规划和低层运动规划相结合,通过目标函数定义目标条件,并能够处理开放式目标、机器人动力学以及机器人与环境之间的物理交互 27。这种方法自然地将模型基轨迹优化方法纳入运动规划,从而生成可行、自然、高效且动态的机器人运动 27。它允许包含更复杂的非线性、非凸目标函数和约束,从而增强了机器人系统在实际部署中的适用性 27。
这些发展趋势表明,未来的工业机器人轨迹优化将更加注重智能化、自适应性和鲁棒性。通过融合多学科技术,机器人将能够更好地应对复杂、动态和不确定的工业环境,实现更高水平的自主性和性能。
结论
工业机器人轨迹优化是现代工业自动化领域的核心技术,其重要性体现在全面提升生产效率、降低运营成本、延长设备寿命、增强操作安全性以及提高产品质量等多个方面。它超越了简单的路径规划,通过在满足严格物理和操作约束的前提下,优化时间、能耗、平滑度、冲击以及可操作性等多个性能指标,从而实现机器人运动的精细化控制。
轨迹优化面临的核心挑战在于多目标之间的冲突管理以及复杂环境下的实时计算。纯粹追求单一目标往往会导致其他性能指标的下降,因此,多目标优化和权衡是实际应用中的必然选择。同时,机器人运动的物理约束和任务特定约束的融合,使得轨迹优化问题日益复杂,需要更先进的算法来应对。
在方法论层面,轨迹优化涵盖了从传统的几何插补、采样基方法(如RRT*)到基于最优控制理论的直接法和间接法(如射击法和搭配法),再到智能算法(如遗传算法、粒子群优化和深度强化学习)的广泛谱系。每种方法都有其独特的优势和局限性,例如,采样基方法擅长在复杂高维空间中快速找到可行解,但可能牺牲最优性;最优控制理论提供严谨的数学框架,但求解复杂;智能算法具有全局搜索能力和模型无关性,但可能在平滑性和收敛性上存在挑战。当前的发展趋势是结合不同方法的优势,例如将采样基方法与轨迹优化结合以获得初始路径并进行精细化,或者将智能算法与传统插补方法结合以兼顾全局最优和平滑度。
在实际应用中,轨迹优化已在焊接、喷涂、密封胶涂覆、物料搬运和装配等多个工业场景中取得了显著效益。量化数据显示,通过轨迹优化,生产周期时间可大幅缩短,能耗显著降低,产品质量得到提升,并有效延长了机器人设备的使用寿命。
展望未来,工业机器人轨迹优化将继续向智能化、自适应性和鲁棒性方向发展。实时性、动态环境适应性以及处理不确定性仍然是核心挑战。人工智能、机器学习(特别是深度强化学习)和数字孪生技术的深度融合将是关键驱动力。数字孪生能够提供高保真的虚拟环境进行仿真、实时监测和优化,并加速AI模型的训练,从而实现虚实交互的轨迹优化和预测性维护。这种多学科技术的交叉融合,将使工业机器人能够更智能、更高效、更安全地应对日益复杂的工业任务,进一步推动智能制造的发展。
引用的著作
Trajectory optimization - Wikipedia, 访问时间为 六月 7, 2025, https://en.wikipedia.org/wiki/Trajectory_optimization
Lecture 5: Trajectory Optimization 5.1 Overview 5.2 ... - Washington, 访问时间为 六月 7, 2025, https://courses.cs.washington.edu/courses/cse571/19wi/lectures/Feb_6th_Anca_Intro_CHOMP_Notes.pdf
工业机器人轨迹规划的研究方法综述 - 信息与控制, 访问时间为 六月 7, 2025, https://xk.sia.cn/cn/article/pdf/preview/10.13976/j.cnki.xk.2024.3428.pdf
工业机器人轨迹规划研究现状综述, 访问时间为 六月 7, 2025, https://journals.nwpu.edu.cn/jxkxyjs/cn/article/doi/10.13433/j.cnki.1003-8728.20200132?viewType=HTML
Industrial robot trajectory optimization- a review - MATEC Web of ..., 访问时间为 六月 7, 2025, https://www.matec-conferences.org/articles/matecconf/pdf/2017/40/matecconf_imtoradea2017_02005.pdf
(PDF) Industrial robot trajectory optimization- a review - ResearchGate, 访问时间为 六月 7, 2025, https://www.researchgate.net/publication/320284531_Industrial_robot_trajectory_optimization-_a_review
Industrial Robot Trajectory Optimization Based on Improved ... - MDPI, 访问时间为 六月 7, 2025, https://www.mdpi.com/2075-1702/12/7/490
CN112692826B - 一种基于改进遗传算法的工业机器人轨迹优化方法 - Google Patents, 访问时间为 六月 7, 2025, https://patents.google.com/patent/CN112692826B/zh
Robotics Part 32 - Trajectory Generation - RoboticsUnveiled, 访问时间为 六月 7, 2025, https://www.roboticsunveiled.com/robotics-trajectory-generation/
Motion Planning for Robotics: A Review for Sampling-based Planners - arXiv, 访问时间为 六月 7, 2025, https://arxiv.org/html/2410.19414v1
WhatIsMotionPlanning - Intelligent Motion Lab, 访问时间为 六月 7, 2025, http://motion.cs.illinois.edu/RoboticSystems/WhatIsMotionPlanning.html
Trajectory Optimization with Geometry-Aware Singularity Avoidance for Robot Motion Planning, 访问时间为 六月 7, 2025, https://lamor.fer.hr/images/50036607/2021-petrovic-singularity-iccas.pdf
Trajectory Optimization in Terms of Energy and Performance of an ..., 访问时间为 六月 7, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC9572378/
Optimization of robot trajectory planning with nature-inspired and ..., 访问时间为 六月 7, 2025, https://aws.amazon.com/blogs/quantum-computing/optimization-of-robot-trajectory-planning-with-nature-inspired-and-hybrid-quantum-algorithms/
Motion Planning: The Complete Guide for Industrial Robotics, 访问时间为 六月 7, 2025, https://flr.io/articles/what-is-motion-planning-and-how-is-it-used-in-industrial-robotics
Research on Trajectory Planning of Industrial ... - IOS Press Ebooks, 访问时间为 六月 7, 2025, https://ebooks.iospress.nl/doi/10.3233/ATDE240480
A review of the trajectory planning of Industrial robots - ResearchGate, 访问时间为 六月 7, 2025, https://www.researchgate.net/publication/382962956_A_review_of_the_trajectory_planning_of_Industrial_robots
(PDF) Optimization of robotic spray painting trajectories using ..., 访问时间为 六月 7, 2025, https://www.researchgate.net/publication/392196193_Optimization_of_robotic_spray_painting_trajectories_using_machine_learning_for_improved_surface_quality
Optimizing Trajectory Points for High Speed Robot Assembly ..., 访问时间为 六月 7, 2025, https://www.researchgate.net/publication/300556268_Optimizing_Trajectory_Points_for_High_Speed_Robot_Assembly_Operations
A multi-objective trajectory optimization algorithm for industrial robot, 访问时间为 六月 7, 2025, https://qikan.cmes.org/gcsjxb/EN/10.3785/j.issn.1006-754X.2022.00.011
Tool Trajectory Optimization of Spray Painting Robot for Many - NADIA, 访问时间为 六月 7, 2025, http://article.nadiapub.com/IJCA/vol7_no8/17.pdf
Trajectory optimization and obstacle avoidance of autonomous robot using Robust and Efficient Rapidly Exploring Random Tree | PLOS One, 访问时间为 六月 7, 2025, https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0311179
A survey of path planning of industrial robots based on rapidly ..., 访问时间为 六月 7, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC10654791/
Multi-Objective Optimal Trajectory Planning for Robotic Arms Using ..., 访问时间为 六月 7, 2025, https://www.mdpi.com/1424-8220/23/13/5974
7.5. Trajectory Optimization - Introduction to Robotics and Perception, 访问时间为 六月 7, 2025, https://www.roboticsbook.org/S75_drone_planning.html
A Survey of Trajectory Planning Techniques for Autonomous Systems - MDPI, 访问时间为 六月 7, 2025, https://www.mdpi.com/2079-9292/11/18/2801
A Survey of Optimization-based Task and Motion Planning: From Classical To Learning Approaches - arXiv, 访问时间为 六月 7, 2025, https://arxiv.org/html/2404.02817v4
Chapter 17. Optimal control, 访问时间为 六月 7, 2025, https://motion.cs.illinois.edu/RoboticSystems/OptimalControl.html
Obeying Constraints During Motion Planning - University of Michigan, 访问时间为 六月 7, 2025, https://arm.robotics.umich.edu/download.php?p=65
Motion Planning – Realization of RObotic Systems Lab - Sites at USC, 访问时间为 六月 7, 2025, https://sites.usc.edu/rros/research/motion-planning/
Horizon: A Trajectory Optimization Framework for Robotic Systems - Frontiers, 访问时间为 六月 7, 2025, https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2022.899025/full
Time Optimal Trajectory Planing Based on Improved ... - Frontiers, 访问时间为 六月 7, 2025, https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2022.852408/full
Transcription Methods for Trajectory Optimization - Matthew Kelly, 访问时间为 六月 7, 2025, https://www.matthewpeterkelly.com/research/MattKelly__Transcription_Methods_for_Trajectory_Optimization.pdf
www.frontiersin.org, 访问时间为 六月 7, 2025, https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2022.852408/full#:~:text=An%20optimal%20time%20trajectory%20planning,the%20inverse%20solution%20calculation%20time.
Trajectory Optimization with Optimization-Based Dynamics - Robotic Exploration Lab, 访问时间为 六月 7, 2025, https://rexlab.ri.cmu.edu/papers/optimization_dynamics.pdf
[2106.09125] Convex Optimization for Trajectory Generation - arXiv, 访问时间为 六月 7, 2025, https://arxiv.org/abs/2106.09125
Robotic Cell Layout Optimization Using a Genetic Algorithm - MDPI, 访问时间为 六月 7, 2025, https://www.mdpi.com/2076-3417/14/19/8605
Genetic Algorithm-Based Trajectory Optimization for ... - Frontiers, 访问时间为 六月 7, 2025, https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2021.793782/full
Path Planning of Mobile Robots Based on Improved Genetic Algorithm - Sultan Publisher, 访问时间为 六月 7, 2025, https://ejournal.sultanpublisher.com/index.php/ijec/article/download/84/40/419
A Novel Knowledge-Based Genetic Algorithm for Robot Path Planning in Complex Environments - arXiv, 访问时间为 六月 7, 2025, https://arxiv.org/pdf/2209.01482
www.mdpi.com, 访问时间为 六月 7, 2025, https://www.mdpi.com/2071-1050/15/5/4656#:~:text=Our%20improved%20genetic%20algorithm%20has,insensitive%20avoidance%20of%20dynamic%20obstacles.
Trajectory Planning of Robotic Arm Based on Particle Swarm ... - MDPI, 访问时间为 六月 7, 2025, https://www.mdpi.com/2076-3417/14/18/8234
(PDF) Trajectory Optimization With Particle Swarm Optimization for ..., 访问时间为 六月 7, 2025, https://www.researchgate.net/publication/277568779_Trajectory_Optimization_With_Particle_Swarm_Optimization_for_Manipulator_Motion_Planning
基于策略—估值—好奇心框架强化学习的机器人轨迹规划 - 计算机应用与软件, 访问时间为 六月 7, 2025, http://www.shcas.net/cn/article/pdf/preview/10.3969/j.issn.1000-386x.2025.03.039.pdf
(PDF) Survey of Model-Based Reinforcement Learning: Applications ..., 访问时间为 六月 7, 2025, https://www.researchgate.net/publication/312921419_Survey_of_Model-Based_Reinforcement_Learning_Applications_on_Robotics
Deep Reinforcement Learning for Robotics: A Survey of Real-World Successes - arXiv, 访问时间为 六月 7, 2025, https://arxiv.org/html/2408.03539v1
数据驱动与知识引导结合下人工智能算法模型 - 电子与信息学报, 访问时间为 六月 7, 2025, https://jeit.ac.cn/cn/article/doi/10.11999/JEIT220700
A Survey of Optimization-based Task and Motion Planning: From Classical To Learning Approaches - arXiv, 访问时间为 六月 7, 2025, https://arxiv.org/html/2404.02817v2
Top 3 Tools for Robot Trajectory Planning - Fuzzy Logic Robotics, 访问时间为 六月 7, 2025, https://flr.io/articles/https/flr.io/articles/automating-aerospace-cleaning-visionic-fuzzy-logic-robotized-precision-0-0
TrajOpt Planner — MoveIt Documentation - PickNik Robotics, 访问时间为 六月 7, 2025, https://moveit.picknik.ai/main/doc/examples/trajopt_planner/trajopt_planner_tutorial.html
moveit_tutorials/doc/stomp_planner/stomp_planner_tutorial.rst at master - GitHub, 访问时间为 六月 7, 2025, https://github.com/ros-planning/moveit_tutorials/blob/master/doc/stomp_planner/stomp_planner_tutorial.rst
Trajectory Optimization for Motion Planning in ROS, 10-R8831, 访问时间为 六月 7, 2025, https://www.swri.org/what-we-do/internal-research-development/2018/manufacturing-construction/trajectory-optimization-motion-planning-ros-10-r8831
Trajectories - Drake, 访问时间为 六月 7, 2025, https://drake.mit.edu/doxygen_cxx/group__planning__trajectory.html
What is Drake? Competitors, Complementary Techs & Usage | Sumble, 访问时间为 六月 7, 2025, https://sumble.com/tech/drake
personalrobotics/or_circularblender: An OpenRAVE plugin for circular trajectory blending, 访问时间为 六月 7, 2025, https://github.com/personalrobotics/or_circularblender
Horizon: A Trajectory Optimization Framework for Robotic Systems - PMC, 访问时间为 六月 7, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC9326239/
Simple-Robotics/aligator: A versatile and efficient C++ library for real-time constrained trajectory optimization - GitHub, 访问时间为 六月 7, 2025, https://github.com/Simple-Robotics/aligator
cuRobo, 访问时间为 六月 7, 2025, https://curobo.org/
Process Simulate software - Tecnomatix - Siemens PLM, 访问时间为 六月 7, 2025, https://plm.sw.siemens.com/en-US/tecnomatix/process-simulate-software/
KineoWorks | Siemens Software, 访问时间为 六月 7, 2025, https://plm.sw.siemens.com/en-US/plm-components/kineo/kineoworks/
Simulation Software ROBOGUIDE - Read more here - FANUC, 访问时间为 六月 7, 2025, https://www.fanuc.eu/eu-en/accessory/software/simulation-software-roboguide
Design a Trajectory Planner for a Robotic Manipulator - MATLAB & - MathWorks, 访问时间为 六月 7, 2025, https://www.mathworks.com/help/robotics/ug/design-trajectory-planner-for-robotic-manipulator.html
Robotics System Toolbox Documentation - MathWorks, 访问时间为 六月 7, 2025, https://www.mathworks.com/help/robotics/index.html
Plan Path for Manipulator in Simulink with Robotics System Toolbox - MATLAB &, 访问时间为 六月 7, 2025, https://www.mathworks.com/help/robotics/ug/plan-path-for-manipulator-in-simulink-with-robotics-system-toolbox.html
No-code robotics software for industrial robot - akeoplus, 访问时间为 六月 7, 2025, https://akeoplus.com/no-code/
Trajectory Optimization and Motion Planning Career Advice : r/robotics - Reddit, 访问时间为 六月 7, 2025, https://www.reddit.com/r/robotics/comments/1imb07e/trajectory_optimization_and_motion_planning/
Trajectory optimization and obstacle avoidance of autonomous robot using Robust and Efficient Rapidly Exploring Random Tree, 访问时间为 六月 7, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC11469531/
What challenges arise when implementing robot pathfinding in dynamic environments, and how can these challenges be overcome? | ResearchGate, 访问时间为 六月 7, 2025, https://www.researchgate.net/post/What_challenges_arise_when_implementing_robot_pathfinding_in_dynamic_environments_and_how_can_these_challenges_be_overcome
Path Planning Challenges for Planetary Robots, 访问时间为 六月 7, 2025, https://www-robotics.jpl.nasa.gov/media/documents/Path_Planning_Challenges_for_Planetary_Robots.pdf
The Future of Manufacturing: Trends in Industrial Robotics, 访问时间为 六月 7, 2025, https://graymatter-robotics.com/the-future-of-manufacturing-trends-in-industrial-robotics/
Recent Advances and Challenges in Industrial Robotics: A Systematic Review of Technological Trends and Emerging Applications - MDPI, 访问时间为 六月 7, 2025, https://www.mdpi.com/2227-9717/13/3/832
Digital Twin Technology in Robotics: Enhancing Predictive Maintenance and Real-Time System Optimization - ResearchGate, 访问时间为 六月 7, 2025, https://www.researchgate.net/publication/390920672_Digital_Twin_Technology_in_Robotics_Enhancing_Predictive_Maintenance_and_Real-Time_System_Optimization
How Digital Twins Are Accelerating Vision AI Training for Robotics - EE Times Europe, 访问时间为 六月 7, 2025, https://www.eetimes.eu/how-digital-twins-are-accelerating-vision-ai-training-for-robotics/
Digital Twin Technology in Robotics: Enhancing Predictive Maintenance and Real-Time System Optimization - ResearchGate, 访问时间为 六月 7, 2025, https://www.researchgate.net/publication/390915359_Digital_Twin_Technology_in_Robotics_Enhancing_Predictive_Maintenance_and_Real-Time_System_Optimization
Genetic Algorithm-Based Trajectory Optimization for Digital Twin Robots - PMC, 访问时间为 六月 7, 2025, https://pmc.ncbi.nlm.nih.gov/articles/PMC8784515/