基于Prophet的时间序列预测Baseline

本文介绍了如何使用Facebook开源的Prophet算法进行时间序列预测,包括模型原理、数据预处理、模型拟合步骤,以及提升预测精度的思路。通过实例展示了如何在电动汽车永磁同步电机温度预测挑战赛中应用Prophet,最终模型在线上测试中获得了0.265的分数,优于ARIMA模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是两年前参加科大讯飞电动汽车永磁同步电机温度预测挑战赛的一个项目,突然在草稿箱中发现这个demo,于是整理一下发出来,项目背景及数据集参考:时间序列实践教程总结!

1. 模型原理

Prophet是Facebook开源的一个时间序列预测算法,是基于时间序列分解和机器学习的拟合来做的,其中在拟合模型的时候使用了 pyStan 这个开源工具,因此能够在较快的时间内得到需要预测的结果。

该算法主要具有以下几个优点:

  • 准确快速。Prophet在Facebook的许多应用程序中用于生成可靠的计划和目标设定预测。在大多数情况下,它的性能要优于其他方法。
  • 全自动。无需人工干预即可获得有关杂乱数据的合理预测。Prophet对异常值,丢失的数据以及时间序列中的急剧变化具有鲁棒性。
  • 可调整。Prophet为用户提供了许多调整和调整预测的可能性。可以使用一些参数来添加自己研究领域的相关知识,从而改善预测效果。

参考链接:

2. 数据处理

首先需要导入以下库:

import pandas as pd
import numpy as np
from fbprophet import Prophet
import datetime
from tqdm import tqdm
import matplotlib.pyplot as plt
import math
from sklearn.preprocessing import StandardScaler, MinMaxScaler
import warnings
warnings.filterwarnings('ignore')

然后读取文件中的数据:

# 读取训练数据和测试数据
train = pd.read_csv('data/train.csv'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值