自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(37)
  • 收藏
  • 关注

原创 两个小时,我搭了一套智能可视化工程项目管理系统!

摘要:本文介绍如何用低代码平台快速搭建工程项目管理系统,解决进度不透明、成本滞后、流程混乱等痛点。系统包含WBS任务分解、甘特图排程、产值核算、验收闭环等功能模块,实现数据自动同步和预警机制。通过2小时搭建的模板系统,可实时监控项目进度、控制成本、规范变更流程,提升管理效率。系统已实测验证能有效解决施工现场信息滞后、责任不清等问题,适用于各类工程项目管理场景。(149字)<|end▁of▁sentence|>

2025-05-21 15:49:57 904

原创 DeepSeek R2 或将发布,压力给到梁文锋

大约100天前,DeepSeek R1横空出世,火爆出圈,被一向傲慢的硅谷科技圈称为“神秘东方力量”,并忧心忡忡地高呼AI领域的“斯普尼克时刻”来了。这款由中国初创公司开发的大模型,用低至600万美元的训练成本,产生足以挑战OpenAI o1的极佳性能,7天内用户数破亿,登顶美国iOS App Store免费应用榜首,更要命的是它还开源……DeepSeek种种杀伤力叠加,难怪让硅谷AI圈觉得“天塌了”。

2025-05-20 15:07:28 825

原创 Agent的工作原理是什么?一文详解Agent的工作原理

Agent(智能体)是一种能够在特定环境中感知、规划、决策并与其他实体交互的计算机程序或实体,具备自主性、反应性、社交性和适应性等特点。其工作流程包括:1)通过提示词(Prompt)明确任务背景和需求;2)利用大语言模型(LLM)进行任务理解和推理;3)调用知识库(Memory)匹配相关信息;4)进行任务规划(Planning),分解目标并制定执行路径;5)通过工具执行具体操作(Action)。随着AI技术的快速发展,AI大模型成为新兴行业的风口,预计2025年AI领域人才缺口达1000万。学习AI大模型需

2025-05-19 16:34:36 794

原创 什么是生成式大模型?什么是多模态大模型?它们之间有什么区别?

生成式AI是一种能够通过学习数据分布并生成新内容的AI技术,其核心在于学习输入特征与标签的联合概率分布,并基于条件概率生成新样本。生成式AI的实现方式多样,包括大模型、隐马尔可夫模型和生成对抗网络等。大模型通常基于Transformer架构,通过训练数据表征学习,记录数据之间的关系,进而生成新内容。多模态模型是生成式AI的扩展,能够处理多种数据模态(如文本、图像、视频等),其核心技术难点在于多模态融合,包括表征、翻译、对齐、融合和联合学习等。多模态模型通过处理不同模态数据的交叉和互补,能够生成更丰富的内容。

2025-05-16 19:58:07 791

原创 Cursor 中的AI模型到底怎么选 ?

不使用Auto模式的原因很简单:**没有掌控感**,官方开设这个选项目的是想让消耗,能力,速度之间达成某种平衡,但实话一分钱一分货,消耗能力和速度本身是不可能三角。与其让Cursor自动分配到垃圾模型白白浪费点数,还不如手动切换一下选择一个合适的,所以这个选项我基本万年不开。

2025-05-16 16:15:17 2879

原创 为什么Multi-Agent多智能体系统终将失败?【伯克利论文】

本文探讨了多智能体大语言模型系统(MAS)在性能上提升有限的原因,并提出了多智能体系统故障分类法(MASFT)以解决这一问题。研究发现,MAS的失败不仅源于大语言模型的局限性,更与其设计中的结构性缺陷有关。通过分析150多条对话轨迹,识别出14种故障模式,并将其归类为3个主要类别。研究还开发了自动评估流程,并通过干预措施验证了改进效果,但结果表明仍需进一步优化MAS的设计。论文的主要贡献包括引入MASFT、开发评估流程、开展干预研究及开源相关数据集和工具,为未来MAS的研究提供了重要参考。

2025-05-15 17:34:04 968

原创 盘点12种VLM多模态大模型,文档结构化抽取,谁最强?

文章介绍了docext平台提供的多种AI能力,包括关键信息提取、视觉问答、光学字符识别、文档分类、长文档处理、表格提取和置信度评分校准。同时,文章强调了AI大模型的快速发展,指出我国在短短一年内已有超过100个超10亿参数的大模型。文章鼓励读者尝试新兴行业,特别是AI大模型领域,预计到2025年将有1000万的人才缺口。此外,文章提供了学习AI大模型的资源链接,强调了学习AI大模型的系统性和持续努力的重要性。

2025-05-15 12:00:00 699

原创 低代码 RAG 只是信息搬运工,Graph RAG 让 AI 具备垂直深度推理能力!

Graph RAG是一种新兴的人工智能技术,它通过将非结构化文本转化为结构化的知识图谱,显著提升了信息检索和推理的效率。与传统RAG相比,Graph RAG能够更好地处理复杂查询和多段信息的关联,解决了传统RAG在处理跨文本推理时的局限性。Graph RAG的核心优势在于其能够构建知识图谱并通过图遍历方式检索信息,使得大模型在处理多跳推理和因果关系时更加高效和准确。这种技术在电商推荐、社交网络分析和知识问答等场景中展现出巨大潜力,为智能检索开辟了新的可能性。随着AI技术的快速发展,Graph RAG有望成为

2025-05-14 19:40:53 1129

原创 AI认知体系的六个层次,敢测试你是在哪个层次吗?

AI正在深刻改变我们的生活和工作方式,从语音助手到智能流水线,其应用无处不在。本文通过“AI认知体系”的六个层次,帮助读者理解AI的奥秘并找到自己的位置。这六个层次包括:认知层(了解AI的基础原理与局限)、工具层(轻量化应用构建)、工程层(企业级部署架构)、知识层(智能中枢建设)、优化层(场景化效能提升)和行业应用层(行业价值闭环)。无论是普通人、企业还是AI从业者,都可以根据自身需求选择适合的切入点,逐步提升对AI的理解和应用能力。AI的发展日新月异,掌握其核心技术与应用场景,将为个人和企业带来更多机遇与

2025-05-13 17:02:07 639

原创 王炸!微软AI Agent支持A2A、MCP协议,智能体黄金时代降临!

5月8号凌晨,微软在官网宣布Azure AI Foundry和Microsoft Copilot Studio两大开发平台,支持最新的Agent开发协议A2A。这也是微软支持MCP后又一关键动作,并且会与谷歌合作一起开发扩大A2A协议,这对于智能体赛道来说意义重大。因为智能体在使用****A2A****、****MCP****协议之后,可以打破数据、开发模式、通信交互、操作环境等诸多壁垒,轻松构建超大规模的复杂智能体自动化流程。简单来说,现阶段的智能体相当于战国时代,每家的技术、数据格式

2025-05-13 14:08:44 1008

原创 【一文详解】透过 Dify 集成看 MCP 的优点和局限

MCP(Model Control Protocol)作为一种新兴技术,主要围绕自动发现、标准化和解耦合三个核心概念展开。它主要用于Agent环境中,通过MCP Server和MCP Client的交互,实现工具和服务的自动发现与调用。MCP的优势在于其标准化和与应用解耦的特性,使得一套MCP Server可以服务于多个AI平台,减少了重复开发的成本。然而,MCP在密钥管理、认证机制、安全隐患以及服务器管理等方面仍存在不足,需要进一步完善。与Dify等平台的插件相比,MCP在功能上类似,但在架构和安全性上有

2025-05-12 18:34:36 827

原创 一篇文章搞懂AI大模型的神经网络--万能近似定理

神经网络是人工智能的核心技术之一,其理论基础是连接主义,旨在通过模拟大脑神经元的结构来实现智能功能。万能近似定理证明了神经网络能够通过调整内部参数拟合任何函数,这为深度学习和人工智能的发展提供了数学依据。近年来,AI大模型迅速崛起,如Alpha-Go和大语言模型,展示了神经网络的强大能力。随着AI领域的快速发展,相关人才需求激增,学习AI大模型成为进入新兴行业的重要途径。尽管学习过程复杂,但丰富的在线资源为零基础学习者提供了机会。

2025-05-12 15:02:51 706

原创 懒人福音:这个AI知识库把“收集-整理-检索“全自动化了!

AI技术的快速发展为知识库产品带来了革命性的变化,尤其是在信息检索和查找方面。然而,当前AI知识库产品的两大难点在于如何快速导入已有知识以及解析各种类型的知识文件。纳米AI通过深入理解用户需求,提供了多种数据导入方式,包括收藏夹、微信和桌面文件,并支持多模态文件的解析,如图片、音频和视频。此外,纳米AI还允许用户分享知识库,并通过AI模型进行高效的知识检索和问答。随着AI领域的快速发展,学习AI大模型成为一项重要的技能,纳米AI的解决方案展示了如何通过技术提升用户体验和知识管理效率。

2025-05-10 16:19:29 784

原创 大模型微调到底有没有技术含量,或者说技术含量到底有多大?

文章探讨了在AI大模型领域,尤其是LLM(大型语言模型)方向,工作的技术含量取决于个人的做法。尽管上手门槛相比传统NLP更低,但不同的做法对个人能力成长的帮助差异显著。文章列举了数据工作和训练代码的多种做法,从简单的继承到深入的分析和改进,强调了深入理解和创新思维的重要性。同时,文章指出AI领域的快速发展,尤其是大模型的迅速增加,为个人提供了新的职业选择和发展机会。最后,文章鼓励读者抓住AI大模型这一风口,通过系统学习和持续努力,掌握相关技能,以适应时代的变化和行业的需求。

2025-05-09 19:15:06 675

原创 AI Agent(智能体)世界的“USB”与“Email”!MCP与ANP如何重塑智能体互联网?

可以将MCP类比为AI模型的“USB协议”——它不是一个独立的AI系统,而是一个让AI更好地获取数据、调用工具、执行任务的标准接口。但随着大模型和智能体的崛起,AI不再是单独运作的个体,而是一个需要主动探索世界、与环境交互、执行任务的智能系统。但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。我们正处在一个历史性的转折点,而智能体协议的演进,将决定AI世界的未来形态。因此,AI世界需要新的通信方式,让智能体能够像人类一样交流、协作,实现真正的AI互联网。

2025-05-08 18:19:28 676

原创 一文讲清!CNN、RNN和DNN:神经网络界的三剑客

每一层的卷积层都会对输入的数据进行局部感受野的扫描,通过滤波器提取特征,然后通过激活函数(比如ReLU)引入非线性,使得网络能够学习复杂的特征表示。随着层级的深入,CNN能够识别出越来越复杂的特征,比如从简单的线条到复杂的形状,甚至是物体的特定部分。它的结构就像俄罗斯套娃,通过层层叠叠的卷积层和池化层,捕捉图像中的特征。RNN的原理在于它的循环连接,这种连接使得网络能够在处理序列数据时,考虑到之前的数据点。RNN:RNN的核心在于它的循环连接,这使得它能够记住之前的信息,并用这些信息来预测下一个输出。

2025-05-08 15:30:17 953

原创 我也曾一上来就想微调大模型,直到我发现自己错得离谱!

无论是ChatGPT、claude,还是DeepSeek,现有的大型语言模型(LLM)虽然强大,但知识都是“死的”,一旦超出训练范围,就会变得不靠谱。但突然,有人问你一个课本没讲的新问题,你有点懵,赶紧抓起手机查百度,找到答案后自信回答。,特别是在垂直行业大模型(Vertical Domain LLM)中,RAG提供灵活的知识检索,而微调确保行业特定任务的精准性。其实,RAG和微调并不非此即彼,很多牛掰的企业直接玩起了“组合拳”:RAG管灵活查资料,微调保专业精准,尤其在。:新知识来了,得重新“补习”。

2025-05-07 16:27:05 469

原创 大模型为啥按Tokens收费?Tokens究竟是什么?

Token计费将输入和输出的文本统一折算为可量化的单位,例如输入1k Token + 输出2k Token = 总费用3k Token,这样一来,用户可直观控制成本。但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。而在语言学中,“Tokens”指语言符号,在语料库语言学里,“tokens”是“形符”,即文本中出现的所有词的个数。,某些汉字或词语可能会被拆分成多个更小的部分,从而占据更多的token。

2025-05-07 15:26:36 872

原创 从RLHF到DPO再到TDPO,大模型对齐算法已经是「token-level」

然而,DPO 主要关注在逆 KL 散度约束下的策略优化。从图 3 (a) 中可以看出,TDPO (TDPO1,TDPO2) 能够达到比 DPO 更好的 reward-KL 的帕累托前沿,而从图 3 (b)-(d) 则可以看出,TDPO 在 KL 散度控制方面表现极为出色,远远优于 DPO 算法的 KL 散度控制能力。TDPO 从 token-level 的角度进行建模,并在每个 token 处引入了额外的前向 KL 散度约束,如图中红色部分所示,控制模型偏移程度的同时,充当了模型对齐的 baseline。

2025-05-06 19:14:29 576

原创 SFT微调 | 为什么新手比专家更想做垂直领域SFT微调?

垂直领域的SFT微调,是一把打开大语言模型潜力的钥匙。通过它,我们可以把通用的“全能选手”变成某个行业的“顶尖专家”。无论是医疗诊断、法律咨询,还是金融分析、教育辅导,只要用对了方法,SFT微调都能让模型大放异彩。总的来说,新手对垂直领域SFT微调的热情源于他们对技术的好奇、对成果的渴望以及对风险的相对无感,而专家则因丰富的经验和对技术边界的清醒认识而更显谨慎。不管你是初入AI领域的新手,还是深耕多年的专家,理解SFT微调的价值与局限都至关重要。

2025-05-06 15:34:21 762

原创 揭秘下一代智能体协作的“交通规则”,不懂就可能错过一个风口!

AI智能体协议是一套定义AI智能体之间以及AI智能体与外部系统(工具、数据源等)通信的规则和标准。简单来说,它就像是AI智能体们的“语言”和“社交礼仪”,确保它们能够理解彼此的需求、传递信息并协作完成任务。想象一下,你家里的智能音箱想知道冰箱里还有多少鸡蛋。它需要“问”冰箱一个问题,而冰箱需要以一种双方都能理解的方式“回答”。这种交互背后需要一套协议来规范信息的格式、传递方式和安全保障。这就是AI智能体协议的作用。学习AI大模型是一项系统工程,需要时间和持续的努力。

2025-05-05 19:59:42 848

原创 我用 Cursor 编程,工作效率直接提升了 10 倍不止!

在发现Cursor真香之后,短短不到一个月,我已经使用了超过1000次的询问次数,把我所有的编程全部迁移到了Cursor(原本我是忠实的Jetbrain用户),也总结出了一些使用的技巧,今天在这里毫无保留地分享给大家,希望能够对大家有所帮助。Save all和Accept all的最大区别在于,Save all是临时性的修改,我们随时可以选择Reject,把代码回退到之前的状态,而Accept all之后,我们就没有办法回退回之前的版本了。学习AI大模型是一项系统工程,需要时间和持续的努力。

2025-05-05 16:17:33 859

原创 为什么AI需要向量数据库?

数据显示,企业AI部署中,RAG架构占比从2023年31%飙升至2024年51%,9倍于微调部署方式。但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。",为AI注入更精准、更深刻、更专业的能力。传统关键词搜索仅匹配完全相同词汇,而向量搜索能理解"苹果"与"iPhone"、"猫"与"宠物"间的关联,实现真正的。医疗领域需要专业医学知识,法律领域需要精通各类法规,金融领域需要掌握复杂产品逻辑。

2025-04-30 17:17:20 607

原创 多模态RAG:解读检索、重排、精炼三大关键技术

无限的输入长度输入MLLM会带来一些实际的困难: 1、有限的上下文窗口:大型语言模型在预训练期间具有固定的输入长度,任何超过此限制的文本都会被截断,导致上下文语义丢失。学习AI大模型是一项系统工程,需要时间和持续的努力。但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。LongLLMLingua将此扩展到长文档,采用线性调度器、重排序机制和对比困惑度来保留与问题相关的token,同时确保关键信息的完整性。

2025-04-30 11:45:00 877

原创 当excel接入DeepSeek后,直接自动生成PPT分析报告

DeepSeek不断打破我们对它的认知,它不但可以生成html格式的数据分析报告。下面是兰色用deepseek做分析报告,和以前不一样的是,它是含图表(图片格式)的。但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。有了这个功能,以后分析更省事了,选取一个表格,直接生成导出PPT。生成的销售数据面板:(有图表有详细的分析文字,而且图表全是动态图表)数据面板,同样可以生成漂亮的分析面板。

2025-04-29 18:56:15 1141

原创 今夜,Qwen3发布,这就是目前最强的开源模型!

不仅囊括了中、英、法、西、俄、阿拉伯等主要的联合国语言,还包含德、意、日、韩、泰、越南、尼泊尔、瑞典、波兰、匈牙利等各国官方语言,甚至连中国的粤语、非洲的斯瓦西里语、中东的意第绪语、西亚的亚美尼亚语、东南亚的爪哇语、美洲的海地语等地方性语言都支持。快速排序 (Quick Sort): 选取“基准”(pivot),然后将元素分区(小于基准的放一边,大于等于的放另一边)的过程非常适合可视化。因为这些国家大多集中在亚洲、非洲、拉丁美洲和大洋洲,他们的总人口占了全球的70%,但经济却只有40%。

2025-04-29 15:41:51 1010

原创 RAG知识库的数据方案:图数据库、向量数据库和知识图谱怎么选?

"时,向量数据库可能会因为分块和相似性搜索机制,错误地将"1983"和"Macintosh"联系起来,给出错误答案。研究表明,从基于GPT4和SQL数据库的16%准确率可提升到使用同一SQL数据库的知识图谱表示时的54%准确率,这种差距对RAG系统的可靠性至关重要。但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。跨数据库的扩展查询效果较差,数据库规模越大,查询效率越低。

2025-04-28 18:56:17 612

原创 r1-reasoning-rag:一种新的 RAG 思路

最近发现了一个开源项目,它提供了一种很好的 RAG 思路,它将的推理能力结合应用于 RAG 检索项目地址项目通过结合Tavily和LangGraph,实现了由 AI 主导的动态信息检索与回答机制,利用deepseek的r1推理来主动地从知识库中检索、丢弃和综合信息,以完整回答一个复杂问题学习AI大模型是一项系统工程,需要时间和持续的努力。但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。【点击蓝字获取】

2025-04-28 15:27:42 757

原创 AI产品经理如何画出一张清晰的技术架构图?

技术架构图通常采用分层设计思路,这种结构直观且易于理解。

2025-04-27 19:14:43 999

原创 国人AI 助手神器Trae+MCP实现知识库检索精度暴涨300%【喂饭级教程】

*3.没有全局概念:**由于知识库里面的文件都是分片存储,每次回答只会检索部分内容,所以,很难准确回答一些全局性的问题(或者说统计型的问题),比如知识库中的老师一共有多少位,一季度有多少个订单等等。我想把这个Excel导入PostgreSQL(表需要新建),根据这个Excel的内容,帮我生成导入所需的sql文件,记得把列名翻译成英文,考虑字段的字符串长度是否够等因素,生成后供我下载。**1.文件分片:**文件分片本身不是局限性,但是分片导致原本连贯的内容被分割,就会导致后期检索到的内容信息缺失。

2025-04-27 15:29:15 939

原创 绕过LLM训练过程的学习者,就像建高楼不打地基!

你是否曾惊叹于 AI 聊天机器人的“魔法”——像gpt、claude 这样的大语言模型(LLM),是如何从一堆代码和数据中“觉醒”,变得能言善辩、无所不能的“语言大师”?在这个技术驱动的时代,LLM 已悄然融入我们的生活:回答问题、创作文章、翻译语言,甚至编写代码,实现智能体,宛如一位全能的“语言魔法师”。今天,我们就来掀开这层神秘的面纱,一步步带你走进大语言模型的开发世界,看看这些强大工具的“魔法”是如何炼成的!大语言模型的训练可不是“一招鲜吃遍天”,不同的模型有不同的“修炼秘籍”。

2025-04-25 17:38:08 733

原创 不懂RAG的原理,永远只是文档搬运工!

简单来说,它就像一个超级能干的“知识管家”:一边从海量的外部资料里翻出你需要的“干货”,一边用大语言模型的“语言魔法”把这些干货整理成清晰、自然的回答。想象一下,它就像一个知识渊博又会讲故事的朋友,既能找到你需要的内容,还能用最舒服的方式讲给你听。有时候,为了让答案更靠谱,系统会对找出来的文本块再排个序。整个过程就像厨师炒菜,原料是检索来的知识,火候是大语言模型的语言功底,最后端上桌的就是一道美味的答案。举个例子,这就像给每页书打上一个独一无二的“指纹”,通过这个指纹,我们就能快速判断这页书讲的是什么。

2025-04-25 14:37:24 837

原创 AI 不止会聊天!深度解析智能体 AI 的五大层级,看看你用的是哪种?

但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。它不仅能分析数据、调用工具,还能自主规划任务、管理多个子代理,甚至独立编写代码,实现完全自主运行!假设你需要查询股票信息,普通AI只能告诉你“请去某网站查看”,而具备工具调用能力的AI可以直接。,看看它是如何从“AI 工具”进化成“AI 合作伙伴”的!,它能像人类一样思考、优化、决策,甚至创造新的工作流程。,AI的自主性正经历一个巨大的进化过程。这时,AI不再是“助手”,而是一个真正的。那么,智能体 AI 究竟是如何发展的?

2025-04-24 11:39:16 1118

原创 产品经理的 5 个 AI 知识点:LLM、Agent、RAG、向量数据库、知识图谱

或许有一天,AI会像水电一样成为“无形的基础设施”,而今天这些晦涩的技术名词,正是通往未来的钥匙。是什么:LLM(Large Language Model)即大语言模型,像ChatGPT、文心一言这类能写诗、编程、聊天的AI,核心都是LLM。是什么:专门存储“向量”(数据的高维数学表示)的数据库,擅长处理非结构化数据(文本/图片/视频)。是什么:Agent(智能体)是能自主规划、决策的AI程序,像一个有目标的“数字打工人”。知识图谱:靠“逻辑关系”推理(如“A是B的父亲→B是A的孩子”)

2025-04-23 20:02:21 776

原创 首篇MCP技术生态全面综述:核心组件、工作流程、生命周期

一种标准化接口,旨在实现AI模型与外部工具和资源之间的无缝交互,打破数据孤岛,促进不同系统之间的互操作性。在MCP出现之前,AI应用与外部工具的交互依赖于等方法,这些方法存在等问题来自华科的研究人员详细探讨了MCP的,并分析了其在创建、运行和更新阶段的,还考察了MCP的当前(行业中采用情况、用例、支持其集成的工具和平台)。学习AI大模型是一项系统工程,需要时间和持续的努力。但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。【点击蓝字获取】

2025-04-23 16:09:58 607

原创 三大AI智能体平台深度对比:Dify、Coze、AWS AI Agent,哪款更适合你?

AWS AI Agent还支持智能体(Agent)对话、AI工作流(AI Workflow)对话和嵌入交互三种模式的自由组合,可嵌入也可独立使用,通过对话 + 技能 + 编排 + 知识 + 行动的模块式组合,接入企业组织权限、系统和数据,探索AI时代10x 生产力。Coze由字节跳动推出,主打低门槛、强对话体验,适合C端用户常用的对话类应用场景,如客服和语音助手。支持企业级 AI 应用的构建、测试、部署、运营和治理,能够帮助企业快速构建高效的 AI 应用,并灵活应对不同业务场景。

2025-04-22 21:58:14 1129

原创 扣子(Coze)怎么搭建工作流?

它可以自动化地处理复杂的业务场景,使得不同的插件、模型等元素能够协同工作,以实现更高效、准确的功能输出。相对于不使用工作流的智能体,包含大模型节点的工作流可单独指定模型的各项配置参数,通过附加的提示词约束模型的行为,使智能体在指定场景下的运行过程更稳定、输出内容更符合预期效果。事实上,提示词(Prompt)和工作流(Workflow)在AI应用中是互补关系而非替代关系,其核心差异在于**「系统化能力」**的构建。但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。

2025-04-22 17:15:46 1106 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除