一,依赖注入概念
依赖注入是将依赖项(例如一个类的实例或一个函数的结果)从类或函数的内部逻辑中解耦出来,并通过外部注入的方式提供给它们。这可以提高代码的模块化和可测试性。
依赖注入常用于以下场景:
- 共享业务逻辑(复用相同的代码逻辑)
- 共享数据库连接
- 实现安全、验证、角色权限
- 等……
在 FastAPI 中,依赖项可以是任何一个被注入到路径操作函数中的函数、类实例或其它对象。
依赖项本身也是一个函数,这个函数可以有它自己的依赖项。FastAPI 会自动处理依赖项的解析和注入。
二,在 FastAPI 中使用依赖注入
下面是一个简单的例子🌰,演示如何在 FastAPI 中使用依赖注入。
import uvicorn
from fastapi import Depends, FastAPI
app = FastAPI()
# 定义一个依赖项
def common_parameters(q: str = None, skip: int = 0, limit: int = 10):
return {
"q": q, "skip": skip, "limit": limit}
@app.get("/items/")
def read_items(commons: dict = Depends(common_parameters)):
return commons
if '__main__' == __name__:
uvicorn.run(app, host='127.0.0.1', port=8088)
在这个例子中:
- common_parameters 函数是一个依赖项,它接受一些查询参数并返回一个包含这些参数的字典。
- read_items 路径操作函数通过
Depends
将 common_parameters 作为依赖项注入。当客户端请求 /items/ 时,FastAPI 会自动调用 common_parameters 函数并将返回值传递给 read_items 函数的 commons 参数。
依赖注入的优点:
- 模块化:将逻辑拆分成小的、独立的部分,每个部分可以单独开发和测试。
- 可测试性:因为依赖项是从外部注入的,所以很容易对其进行 mock 或替换,方便单元测试。
- 可维护性:当依赖项发生变化时,只需要修改依赖项本身,而不需要修改依赖它的所有代码。
依赖注入可以用来处理更复杂的场景,例如数据库连接、认证、缓存等。下面是一个更复杂的例子🌰:
import uvicorn
from fastapi import Depends, FastAPI, HTTPException
from pydantic import BaseModel
app = FastAPI()
# 模拟的数据库
fake_items_db = [{
"item_name": "Foo"}, {
"item_name": "Bar"}, {
"item_name": "Baz"}]
# 定义一个模型
class Item(BaseModel):
item_name: str
# 定义一个数据库依赖项
def get_db():
db = fake_items_db
try: