编译方法:是为了配置学习过程, 三个参数:
1.optimizer:SGD RMSprop Adagrad Adadelta Adam Adamax Nadam
2.loss function:mean_squared_error mean_absolute_error hinge , categorical_crossentropy sparse_categorical_crossentropy binary_crossentropy
3.list of metrics,可自定义
model = Sequential()
model.add(Conv2D(64, (3, 3),
input_shape=(3, 32, 32), padding=‘same’,))
现在:model.output_shape == (None, 64, 32, 32)
model.add(Flatten())
现在:model.output_shape == (None, 65536)