keras学习笔记

编译方法:是为了配置学习过程, 三个参数:
1.optimizer:SGD RMSprop Adagrad Adadelta Adam Adamax Nadam
2.loss function:mean_squared_error mean_absolute_error hinge , categorical_crossentropy sparse_categorical_crossentropy binary_crossentropy
3.list of metrics,可自定义

model = Sequential()
model.add(Conv2D(64, (3, 3),
input_shape=(3, 32, 32), padding=‘same’,))
现在:model.output_shape == (None, 64, 32, 32)
model.add(Flatten())
现在:model.output_shape == (None, 65536)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值