矩阵快速幂模板

本文详细介绍了矩阵乘法的基础知识及矩阵快速幂算法,用于高效计算矩阵的幂次运算。通过实例讲解如何将递推式转化为矩阵递推式,以解决如斐波那契数列等复杂递推问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基础知识

(1)矩阵乘法

简单的说矩阵就是二维数组,数存在里面,矩阵乘法的规则:A*B=C

其中c[i][j]为A的第i行与B的第j列对应乘积的和,即:

(2)矩阵快速幂模板

       就是算A^n,就是把快速幂算法中的乘法改成矩阵的乘法就可以了

代码:

#include<iostream>
#include<cstring>
using namespace std;
const int N=5;
struct mat{
	int m[N][N];
}init;
void Init()
{
	init.m[0][0]=1;
	init.m[0][1]=2;
	init.m[1][0]=2;
	init.m[1][1]=1;
}
mat Mul(mat a,mat b,int n)
{
	mat c;
	memset(c.m,0,sizeof(c.m));
	for(int i=0;i<n;i++)
	for(int j=0;j<n;j++)
	for(int k=0;k<n;k++)
	  c.m[i][j]+=a.m[i][k]*b.m[k][j];
	return c;
}
mat quickpow(mat a,int n)
{
	mat res;
	int k=n;
    memset(res.m,0,sizeof(res.m));
    for(int i=0;i<n;i++) res.m[i][i]=1;
    while(k)
    {
    	if(k&1) res=Mul(a,res,n);
    	a=Mul(a,a,n);
    	k>>=1;
	}
	return res;
}
int main()
{
	int n;
	cin>>n;
	Init();
	mat t=quickpow(init,2);
	cout<<t.m[0][0]<<" "<<t.m[0][1]<<endl;
	cout<<t.m[1][0]<<" "<<t.m[1][1]<<endl;
	return 0;
}

例一:http://poj.org/problem?id=3070
题目:斐波那契数列f(n),给一个n,求f(n)%10000,n<=1e9;

(这题是可以用fibo的循环节去做的,不过这里不讲,反正是水题)

矩阵快速幂是用来求解递推式的,所以第一步先要列出递推式:

 f(n)=f(n-1)+f(n-2)

第二步是建立矩阵递推式,找到转移矩阵:

,简写成T * A(n-1)=A(n),T矩阵就是那个2*2的常数矩阵,而

这里就是个矩阵乘法等式左边:1*f(n-1)+1*f(n-2)=f(n);1*f(n-1)+0*f(n-2)=f(n-1);

这里还是说一下构建矩阵递推的大致套路,一般An与A(n-1)都是按照原始递推式来构建的,当然可以先猜一个An,主要是利用矩阵乘法凑出矩阵T,第一行一般就是递推式,后面的行就是不需要的项就让与其的相乘系数为0。矩阵T就叫做转移矩阵(一定要是常数矩阵),它能把A(n-1)转移到A(n);然后这就是个等比数列,直接写出通项:此处A1叫初始矩阵。所以用一下矩阵快速幂然后乘上初始矩阵就能得到An,这里An就两个元素(两个位置),根据自己设置的A(n)对应位置就是对应的值,按照上面矩阵快速幂写法,res[1][1]=f(n)就是我们要求的。

给一些简单的递推式
1.f(n)=a*f(n-1)+b*f(n-2)+c;(a,b,c是常数)

2.f(n)=c^n-f(n-1) ;(c是常数)

### 矩阵快速幂算法的实现 矩阵快速幂是一种高效的算法,用于计算矩阵的高次幂。它基于分治的思想以及矩阵乘法的结合律来降低时间复杂度。以下是矩阵快速幂的一个通用代码模板: #### Python 实现 ```python import numpy as np def matrix_multiply(A, B, mod=None): """矩阵相乘""" rows_A, cols_A = len(A), len(A[0]) rows_B, cols_B = len(B), len(B[0]) if cols_A != rows_B: raise ValueError("无法进行矩阵乘法") result = [[0 for _ in range(cols_B)] for __ in range(rows_A)] for i in range(rows_A): for j in range(cols_B): temp_sum = 0 for k in range(cols_A): temp_sum += A[i][k] * B[k][j] if mod is not None: temp_sum %= mod result[i][j] = temp_sum return result def matrix_power(matrix, n, mod=None): """矩阵快速幂""" size = len(matrix) identity_matrix = [[int(i == j) for j in range(size)] for i in range(size)] result = identity_matrix base = matrix while n > 0: if n % 2 == 1: result = matrix_multiply(result, base, mod=mod) base = matrix_multiply(base, base, mod=mod) n //= 2 return result ``` 上述代码实现了两个核心函数: - `matrix_multiply`:完成两个矩阵之间的乘法操作,并支持模运算[^1]。 - `matrix_power`:通过快速幂的方式高效地计算矩阵的高次幂。 #### C++ 实现 对于更注重性能的语言如C++,也可以提供类似的实现方式: ```cpp #include <vector> using namespace std; // 定义矩阵大小和取模值 const int MOD = 1e9 + 7; typedef vector<vector<long long>> Matrix; Matrix multiply(const Matrix &A, const Matrix &B){ int r = A.size(), c = B[0].size(); Matrix C(r, vector<long long>(c, 0)); for(int i = 0;i < r;i++) { for(int j = 0;j < c;j++) { for(int k = 0;k < (int)B.size();k++) { C[i][j] = (C[i][j] + A[i][k]*B[k][j])%MOD; } } } return C; } Matrix power(Matrix base, long long exp){ int sz = base.size(); Matrix res(sz, vector<long long>(sz, 0)); // 单位矩阵初始化 for(int i = 0;i < sz;i++) res[i][i] = 1; while(exp > 0){ if(exp & 1){ // 如果当前指数为奇数 res = multiply(res, base); } base = multiply(base, base); // 平方更新基底 exp >>= 1; // 右移一位相当于除以2 } return res; } ``` 以上代码同样包含了两部分功能: - `multiply` 函数负责执行矩阵间的乘法并处理大整数溢出问题[^4]。 - `power` 函数则采用快速幂的方法加速矩阵幂次的计算。 #### 应用实例——斐波那契数列 假设我们需要使用矩阵快速幂求解第 \(n\) 项斐波那契数列,则可以通过如下构造矩阵来进行计算: \[ M = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, V_0 = \begin{bmatrix} F(1)\\ F(0) \end{bmatrix} = \begin{bmatrix} 1\\ 0 \end{bmatrix}. \] 那么有 \(\text{{result}} = M^{n-1} \times V_0\) 表示最终的结果向量[^3]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小鱼爱吃火锅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值