
3dgs
文章平均质量分 85
大江东去浪淘尽千古风流人物
主要研究方向:XR芯片与算法(SLAM,三维重建,空间计算等) 欢迎讨论&&交流
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【3dgs】Gaussian-SLAM发展关键历程梳理
Gaussian-SLAM: Photo-realistic Dense SLAM with Gaussian Splattingcode:概述:3D 高斯泼溅(Splatting)是用于实时辐射场渲染的 3D 高斯分布描述的一种光栅化技术,它允许实时渲染从小图像样本中学习到的逼真场景。基本原理:从已有的点云模型出发,以每个点为中心,建立可学习的3D高斯表达(椭球来表示三维点,参数包括中心位置、不透明度、协方差矩阵和用球谐函数表达的颜色),用Splatting的方法进行渲染,实现高分辨率的实时渲染。引原创 2024-10-12 14:24:55 · 2240 阅读 · 0 评论 -
【3dgs】总结3DGS与NeRF如何重塑SLAM(24年4月最新进展)
1. 摘要2. 简洁3. 背景3.3.1 NeRF3.3.2 3dgs3.4 数据集4 数据集4.1 SLAM3.1 RGB-D SLAM方法3.1.1 基于NeRF风格的RGB-D SLAM3.1.2 基于3DGS风格的 RGB-D SLAM3.1.3 基于子图的SLAM(Submaps)paper:SLAM领域的研究经历了重大变革,突显了其在实现未知环境的自主探索方面的关键作用。原创 2024-10-11 06:19:47 · 2068 阅读 · 0 评论 -
【3dgs】3DGS与NeRF对比
3DGS适用于需要显式几何信息实时处理以及精确测量的应用,如自动驾驶、工业检测、机器人视觉等。NeRF强调高质量渲染,适用于渲染复杂场景和生成逼真图像的应用,如电影特效、虚拟现实、虚拟旅游等场景,渲染效果优于几何精度。这两种方法各有所长,适合不同的应用需求。如果你需要精确的几何信息和实时处理,选择3DGS;如果需要逼真的场景渲染和处理复杂光照,NeRF则是更好的选择。原创 2024-10-09 05:01:41 · 3519 阅读 · 0 评论 -
【NERF】入门学习整理(三)
其中,( M ) 和 ( N ) 分别为图像的高度和宽度,( I(i,j) ) 和 ( K(i,j) ) 分别表示原始图像和处理后的图像在位置 ( (i,j) ) 处的像素灰度值。通过这个计算公式,可以得到处理后图像相对于原始图像的质量损失程度,PSNR值越高,表明图像质量损失越小。其中,MAX表示像素值的最大可能取值(比如对于8位灰度图像,MAX=255)。原创 2023-04-19 17:43:49 · 370 阅读 · 0 评论 -
【NERF】入门学习整理(二)
Loss定义(其实就是简单的均方差MSE)原创 2024-03-10 01:11:18 · 900 阅读 · 0 评论 -
【NeRF数据集】LLFF格式数据集处理colmap结果记录
以方便python读取,且NeRF模型源码拥有直接对LLFF格式数据集进行训练的配置和模块,便于研究者使用。或者 File 导出 export model,新建名称为sparse保存的位置,sparse文件下的0文件作为输出结果,这里包含具体见上图。得到COLMAP位姿匹配数据后,我们要对每张图片的位姿信息进行格式转换,转换为LLFF格式方便Nerf模型读取。而不是直接输入图像数据,当然也可以,只是存在2个问题,1是收敛速度变慢,2是重建效果变差。配置nerf-pytorch 工程 ,开始训练!原创 2024-01-03 17:52:14 · 4348 阅读 · 3 评论 -
【NERF】入门学习整理(一)
在深度学习中,concat操作指的是连接(concatenate)操作,通常用于将两个张量沿着指定的轴(通常是某个维度)进行拼接。位置编码(x,y,z):主要是为了将图像中的高频信息体现出来,可以大幅提高图片中的细节质量,不受到周边位置平滑的操作的影响。,在获取一定范围采样点的(r,g,b,a)之后需要再进行特定积分运算,最终得到对应像素最终的(r,g,b,a),在训练时通过。输入:是一个五维的相机位姿(x,y,z,Yaw,Pitch)input:(x,y,z,0,φ)代表输入的相机位姿。原创 2024-03-09 23:46:50 · 2250 阅读 · 0 评论 -
【3D-GS】Gaussian Splatting SLAM——基于3D Gaussian Splatting的全网最详细的解析
fx1σ2πe−x−μ22σ2fxσ2π1e−2σ2x−μ2其中:μ 是正态分布的 均值,代表数据中心的位置。σ 是正态分布的 标准差,代表数据离散程度。对于一段x区间,进行积分可以得到分布中的数据落在这一-区间的概率,其中绝大多数落在3sigma区域(概率是0.9974)。因此,一组mumumu和sigma/sigmasigma。原创 2024-03-30 19:00:00 · 4673 阅读 · 0 评论